• Title/Summary/Keyword: tip position control

Search Result 123, Processing Time 0.03 seconds

Two-Stage Sliding Mode Controller for Bending Mode Suppression of a Flexible Pointing System (유연성 포인팅 시스템의 진동모드 보상을 위한 2단계 슬라이딩 모드 제어기)

  • 박장현;김경완;이교일;김학성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.971-976
    • /
    • 1996
  • A flexible pointing system mounted on top of a vehicle suffers from performance degradation due to bending vibrations as the vehicle runs on a bump course. In order to improve the pointing performance, the pointing structure's vibrations should be suppressed. In this paper, a nonlinear controller is designed to control the tip position of the pointing system while actively suppressing the vibrations. To cope with high order dynamics and nonlinearities of the plant and hydraulic actuating system, a two-stage sliding mode controller is devised. The desired actuating pressure is obtained in the first stage and then the in put current In the hydraulic servo system is computed to generate the pressure. The simulation results show the effectiveness of this scheme and improvements in pointing accuracy.

  • PDF

Design of Smart flap actuators for swept shock wave/turbulent boundary layer interaction control

  • Couldrick, Jonathan;Shankar, Krishnakumar;Gai, Sudhir;Milthorpe, John
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.519-531
    • /
    • 2003
  • Piezoelectric actuators have long been recognised for use in aerospace structures for control of structural shape. This paper looks at active control of the swept shock wave/turbulent boundary layer interaction using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and unimorph tip deflection, hence mass transfer rates. The actuators are modelled using classical composite material mechanics theory, as well as a finite element-modelling program (ANSYS 5.7).

Normalized gestural overlap measures and spatial properties of lingual movements in Korean non-assimilating contexts

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • The current electromagnetic articulography study analyzes several articulatory measures and examines whether, and if so, how they are interconnected, with a focus on cluster types and an additional consideration of speech rates and morphosyntactic contexts. Using articulatory data on non-assimilating contexts from three Seoul-Korean speakers, we examine how speaker-dependent gestural overlap between C1 and C2 in a low vowel context (/a/-to-/a/) and their resulting intergestural coordination are realized. Examining three C1C2 sequences (/k(#)t/, /k(#)p/, and /p(#)t/), we found that three normalized gestural overlap measures (movement onset lag, constriction onset lag, and constriction plateau lag) were correlated with one another for all speakers. Limiting the scope of analysis to C1 velar stop (/k(#)t/ and /k(#)p/), the results are recapitulated as follows. First, for two speakers (K1 and K3), i) longer normalized constriction plateau lags (i.e., less gestural overlap) were observed in the pre-/t/ context, compared to the pre-/p/ (/k(#)t/>/k(#)p/), ii) the tongue dorsum at the constriction offset of C1 in the pre-/t/ contexts was more anterior, and iii) these two variables are correlated. Second, the three speakers consistently showed greater horizontal distance between the vertical tongue dorsum and the vertical tongue tip position in /k(#)t/ sequences when it was measured at the time of constriction onset of C2 (/k(#)t/>/k(#)p/): the tongue tip completed its constriction onset by extending further forward in the pre-/t/ contexts than the uncontrolled tongue tip articulator in the pre-/p/ contexts (/k(#)t/>/k(#)p/). Finally, most speakers demonstrated less variability in the horizontal distance of the lingual-lingual sequences, which were taken as the active articulators (/k(#)t/=/k(#)p/ for K1; /k(#)t/

The Effect of the Impacted Position of Palatally Inverted Mesiodens on the Selection of Sedation Method

  • Soojin Choi;Jihyun Song
    • Journal of Korean Dental Science
    • /
    • v.16 no.1
    • /
    • pp.63-73
    • /
    • 2023
  • Purpose: Hyperdontia is a developmental disorder of the oral cavity. Mesiodens refers to the hyperdontia located between the maxillary central incisors. During the surgical procedure, the anesthetic method for pain control should be considered along with factors related to the surgery itself. The purpose of this study was to evaluate the effect of the impacted position of the mesiodens on the selection of sedation method and to suggest incisive foramen as a brief reference. Materials and Methods: This study included 126 patients who were scheduled for extraction of mesiodens. The selection criteria included patients with one palatally impacted inverted mesiodens accessible from the palatal gingival margin, and those with good cooperation potential in order to control for clinical information. Using cone beam computed tomography, vertical, horizontal, and palatal positional factors were measured, and the anesthetic method was determined by two examiners. The patients were grouped into vertical and horizontal groups based on the position of the incisive foramen. Data were statistically analyzed using the Mann-Whitney test, the chi-square test, and logistic regression analysis. Result: All positional factors differed between the outpatient and inpatient anesthetic groups. The vertical minimum distance from the alveolar ridge to the mesiodens (Va) and the minimum distance from the palatal surface to the crown tip of the mesiodens (Tc) were factors affecting the choice of anesthetic method. The distribution of the vertical and horizontal positional groups differed between the outpatient and inpatient anesthetic groups. Conclusion: The incisive foramen can be used as a brief reference to determine the appropriate anesthetic method. Referral for inpatient anesthesia may be a priority if they are in the V2H2 group with Va ≥5 mm, and Tc ≥6 mm, and outpatient sedation may be considered if they are in the V1H1 group with Va ≤1.5 mm, and Tc ≤2.5 mm.

Maximum Power Control of Tidal Current Generation System using P&O Algorithm (P&O알고리즘을 이용한 조류발전 시스템의 최대출력 제어)

  • Moon, Seok-Hwan;Kim, Ji-Won;Park, Byung-Gun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • Maximum Power Point Tracking (MPPT) control needs to generate the maximum power of a tidal current turbine. A tidal current speed sensor is required to achieve effective generated power in a tidal current generation system. The most common methods used to achieve such power is the tip speed ratio of turbine and tidal current information. However, these methods have disadvantages, such as expensive installation of the tidal current sensor, parameter errors in turbine design, and different information according to the installed position of the tidal current sensor. This paper proposes a maximum power control scheme using perturb-and-observe (P&O) for tidal current generation system. The proposed P&O MPPT scheme can achieve the maximum power without tidal current sensors and turbine design parameters. The reliability and suitability of the proposed control scheme are proven through simulation and experiment results at the tidal current generation laboratory.

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

A nonlinear programming approach to collision-avoidance trajectory planning of multiple robots

  • Suh, Suk-Hwan;Kim, Myung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.635-642
    • /
    • 1989
  • We formulated the multi-robot trajectory problem into a series of NLP problem, each of which is that of finding the optimal tip positions of the robots for the next time step. The NLP problem is composed of an objective function and three constraints, namely: a) Joint position limits, b) Joint velocity limits, and c) Collision-avoidance constraints. By solving a series of NLP problem, optimally coordinated trajectories can be determined without requiring any prior path information. This is a novel departure from the previous approach in which either all paths or at least one path is assumed to be given. Practical application of the developed method is for optimal synthesis of multiple robot trajectories in off-line. To test the validity and effectiveness of the method, numerical examples are illustrated.

  • PDF

A Study on Seam Tracking for Fillet Welding using High Speed Rotating Arc Sensor (고속회전 아크센서를 이용한 필렛 용접선 추적에 관한 연구)

  • Lee, Won-Ki;Lee, Gun-You;Oh, Myung-Seok;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.917-922
    • /
    • 2003
  • In this paper, a high speed rotating arc sensor for automatic fillet welding is introduced. In order to track the welding seam, The high speed rotating arc sensor is used. The welding tip of a high speed rotating arc sensor rotates about 3000 rpm using DC motor. The rotating torch is driven by gear between welding torch body and wire guide. The welding current is measured by using the current sensor and rot at ing position sensor. To realize the welding seam tracking algorithm with accuracy, a software filter algorithm using the moving average method is applied to the measured welding current in the microprocessor. The welding mobile robot with two wheels and two sliders is developed for fillet welding. The welding mobile robot can control its traveling direction and turn itself around the corner. The effectiveness is proven through the experimental results conducted with varied fillet tracking patterns.

  • PDF

3-dimensional formation system using a robot hand

  • Morita, Keita;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.366-369
    • /
    • 1992
  • In this paper we propose a 3-dimensional formation system using an arc welding robot. The principle of our system is just only to accumulate welding beads, so that the target 3-dimensional surfaces can be built up. Considering the effects of the gravity on the arc welding, the welding torch is steadily clamped and the position and the posture of the target board on which target work is formed is controlled by a 6-axis robot hand. Movements of the target board are controlled considering the 3dimensional shape of the target and the accumulating speed of the welding bead. In order to realize such systems, a distance sensor is mounted on the tip of the robot hand. And a coordinate transformation technique is employed

  • PDF

Nanolithography Using Haptic Interface in a Nanoscale Virtual Surface (햅틱인터페이스를 이용한 나노스케일 가상표면에서의 나노리소그래피)

  • Kim Sung-Gaun
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Nanoscale task such as nanolithography and nanoindenting is a challenging work that is beyond the capabilities of human sensing and precision. Since surface forces and intermolecular forces dominate over gravitational and other more intuitive forces of the macro world at the nanoscale, a user is not familiar with these novel nanoforce effects. In order to overcome this scaling barrier, haptic interfaces that consist of visual and force feedback at the macro world have been used with an Atomic Force Microscope (AFM) as a manipulator at the nanoscale. In this paper, a nanoscale virtual coupling (NSVC) concept is introduced and the relationship between performance and impedance scaling factors of velocity (or position) and force are explicitly represented. Experiments have been performed for nanoindenting and nanolithography with different materials in the nanoscale virtual surface. The interaction forces (non contact and contact nanoforces) between the AFM tip and the nano sample are transmitted to the operator through the haptic interface.