• Title/Summary/Keyword: tin sulfide

Search Result 27, Processing Time 0.027 seconds

Radiosynovectomy (방사성 활막절제술)

  • Kim, Deog-Yoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.127-131
    • /
    • 2006
  • Radiosynovectomy has been used as an effective treatment in patients with resistant synovitis after failure of long-term medication and intraarticular steroid injection. Although $^{90}Y$ silicate/citrate, $^{186}Re$ sulfide, and $^{169}Er$ citrate were approved in Europe for the appropriate radiopharmaceuticals for radiosynovectomy other radionuclides such as $^{32}P$-chromic phosphate, $^{165}Dy$-ferric hydroxide macroaggregate, $^{188}Rh$-microspheres, $^{153}Sm-particulate, and $^{166}Ho$-ferric hydroxide macroaggregate have been used in many countries. Reported success rates range from 40% to 90% for the different joints and underlying disease. In Korea, $^{188}Re$-tin-colloid and $^{166}Ho$-chitosan complex are now using as the major radionuclides in radiosynovectomy with good clinical results. A study on radiation synovectomy using $^{188}Re$-tin-colloid for patients with Korean rheumatoid arthritis shows the treatment resulted in the improvement of arthritis and well tolerated in our study, the radiosynovectomy with $^{166}Ho$-chitosan complex in 53 hemophilic patients markedly decreased intra-articular bleeding frequency and need for coagulation factor. This review inculdes general priciples in the application of radiosynovectomy and the clinical experience in Korea.

One Step Electrodeposition of Copper Zinc Tin Sulfide Using Sodium Thiocyanate as Complexing Agent

  • Sani, Rabiya;Manivannan, R.;Victoria, S. Noyel
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.308-319
    • /
    • 2018
  • Single step electrodeposition of $Cu_2ZnSnS_4$ (CZTS) for solar cell applications was studied using an aqueous thiocyanate based electrolyte. The sodium thiocyanate complexing agent was found to decrease the difference in the deposition potential of the elements. X-ray diffraction analysis of the samples indicates the formation of kesterite phase CZTS. UV-vis studies reveal the band gap of the deposits to be in the range of 1.2 - 1.5 eV. The thickness of the deposit was found to decrease with increase in pH of the electrolyte. Nearly stoichiometric composition was obtained for CZTS films coated at pH 2 and 2.5. I-V characterization of the film with indium tin oxide (ITO) substrate in the presence and the absence of light source indicate that the resistance decrease significantly in the presence of light indicating suitability of the deposits for solar cell applications. Results of electrochemical impedance spectroscopic studies reveal that the cathodic process for sulfur reduction is the slowest among all the elements.

Electrodeposition of SnS Thin film Solar Cells in the Presence of Sodium Citrate

  • Kihal, Rafiaa;Rahal, Hassiba;Affoune, Abed Mohamed;Ghers, Mokhtar
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.206-214
    • /
    • 2017
  • SnS films have been prepared by electrodeposition technique onto Cu and ITO substrates using acidic solutions containing tin chloride and sodium thiosulfate with sodium citrate as an additive. The effects of sodium citrate on the electrochemical behavior of electrolyte bath containing tin chloride and sodium thiosulfate were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were characterized by XRD, FTIR, SEM, optical, photoelectrochemical, and electrical measurements. XRD data showed that deposited SnS with sodium citrate on both substrates were polycrystalline with orthorhombic structures and preferential orientations along (111) directions. However, SnS films with sodium citrate on Cu substrate exhibited a good crystalline structure if compared with that deposited on ITO substrates. FTIR results confirmed the presence of SnS films at peaks 1384 and $560cm^{-1}$. SEM images revealed that SnS with sodium citrate on Cu substrate are well covered with a smooth and uniform surface morphology than deposited on ITO substrate. The direct band gap of the films is about 1.3 eV. p-type semiconductor conduction of SnS was confirmed by photoelectrochemical and Hall Effect measurements. Electrical properties of SnS films showed a low electrical resistivity of $30{\Omega}cm$, carrier concentration of $2.6{\times}10^{15}cm^{-3}$ and mobility of $80cm^2V^{-1}s^{-1}$.

Two dimensional tin sulfide for photoelectric device

  • Patel, Malkeshkumar;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.389.1-389.1
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

Surface Treatments of Bronze Mirrors Excavated from Korean Peninsula (한반도 출토 청동거울의 표면처리 기법에 관한 연구)

  • Jeon, Ik-Hwan;Lee, Jae-Sung;Baek, Ji-Hye;Park, Jang-Sik
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.87-98
    • /
    • 2008
  • Microstructures and chemical compositions of 24 bronze mirrors recovered from the Korean peninsula were examined using the scanning electron microscope equipped with the energy dispersive spectrometer in an effort to characterize the treatments applied on their surface. Their provenance and chronology are mostly unspecified except for two objects from a Koryo burial site. In antiquity the surface of bronze mirrors was frequently finished by mere polishing when their tin content was high enough to guarantee the required reflectivity. In many cases, however, their surface was given a special treatment. The most typical treatment was to coat the surface with tin in two different processes referred to as wipe-tinning and amalgam-tinning. In wipe-tinning only tin was used, but in amalgam-tinning tin and mercury were used together. The surface was often coated with mercury in a process known as mercury-polishing. The present mirrors showed that all these techniques were in fact practiced, not only on the reflective surface but, in some cases, on the decorative surface. The detection of mercury played a crucial role in the assessment of a specific technique applied in each mirror. Mercury often remained in the substrate in the form of sulfide and thereby allowed the method of surface treatment to be estimated even when the coated layer was completely lost. The future study is expected to uncover the regional and temporal variation of the surface treatments to the better understanding of bronze mirrors with respect to provenance and chronology.

  • PDF

Reaction Path of Cu2ZnSnS4 Nanoparticles by a Solvothermal Method Using Copper Acetate, Zinc Acetate, Tin Chloride and Sulfur in Diethylenetriamine Solvent

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kown, HyukSang
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2013
  • $Cu_2ZnSnS_4$ (CZTS) nanoparticles were synthesized by a solvothermal method using copper (II) acetate, zinc acetate, tin chloride, and sulfur in diethylenetriamine solvent. Binary sulfide particles such as CuS, ZnS, SnS, and $SnS_2$ were obtained at $180^{\circ}C$; single-phase CZTS nanoparticles were obtained at $280^{\circ}C$. CZTS nanoparticles with spherical shape and grain size of 40 to 60 nm were obtained at $280^{\circ}C$. In the middle of 180 and $280^{\circ}C$, CZTS and ZnS phases were found. The time variation of reaction at $280^{\circ}C$ revealed that an amorphous state formed first instead of binary phases and then the amorphous phase was converted to crystalline CZTS state; it is different reaction path way from conventional solid-state reaction path of which binary phases react to form CZTS. CZTS films deposited and annealed from single-phase nanoparticles showed porous microstructure and poor adhesion. This indicates that a combination of CZTS and other flux phase is necessary to have a dense film for device fabrication.

Improved Performance of CdS/CdTe Quantum Dot-Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes

  • Shin, Hokyeong;Park, Taehee;Lee, Jongtaek;Lee, Junyoung;Yang, Jonghee;Han, Jin Wook;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2895-2900
    • /
    • 2014
  • We fabricated quantum dot-sensitized solar cells (QDSSCs) using cadmium sulfide (CdS) and cadmium telluride (CdTe) quantum dots (QDs) as sensitizers. A spin coated $TiO_2$ nanoparticle (NP) film on tin-doped indium oxide glass and sputtered Au on fluorine-doped tin oxide glass were used as photo-anode and counter electrode, respectively. CdS QDs were deposited onto the mesoporous $TiO_2$ layer by a successive ionic layer adsorption and reaction method. Pre-synthesized CdTe QDs were deposited onto a layer of CdS QDs using a direct adsorption technique. CdS/CdTe QDSSCs had high light harvesting ability compared with CdS or CdTe QDSSCs. QDSSCs incorporating single-walled carbon nanotubes (SWNTs), sprayed onto the substrate before deposition of the next layer or mixed with $TiO_2$ NPs, mostly exhibited enhanced photo cell efficiency compared with the pristine cell. In particular, a maximum rate increase of 24% was obtained with the solar cell containing a $TiO_2$ layer mixed with SWNTs.

Flexible quantum dot solar cells with PbS-MIx/PbS-BuDT bilayers

  • Choe, Geun-Pyo;Yang, Yeong-U;Yun, Ha-Jin;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.2-347.2
    • /
    • 2016
  • Recently, in order to improve the performance of the colloidal quantum dot solar cells (CQDSCs), various efforts such as the modification of the cell architecture and surface treatment for quantum dot (QD) passivation have been made. Especially, the incorporation of halides into the QD matrix was reported to improve the performances significantly via passivating QD trap states that lower the life-time of the minority-carrier. In this work, we fabricated a lead sulfide (PbS) QD bilayer treated with different ligands and utilized it as a photoactive layer of the CQDSCs. The bottom and top PbS layer was treated using metal iodide ($MI_x$ and butanedithiol (BuDT), respectively. All the depositions and ligand treatments were carried out in air using layer-by-layer spin-coating process. The fabrication of the active layers as well as the n-type zinc oxide (ZnO) layer was successfully carried out on the bendable indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) substrate, which implies that this technique can be applied to the fabrication of flexible and/or wearable solar cells. The power conversion efficiency (PCE) of the CQDSCs with the architecture of $PET/ITO/ZnO/PbS-MI_x/PbS-BuDT/MoO_x/Ag$ reached 4.2 %, which is significantly larger than that of the cells with single QD (PbS-BuDT) layer.

  • PDF

Performance Evaluation of Substitution Radiopharmaceutical according to Restriction of the Radiocolloids in Lymphoscintigraphy (Lymphoscintigraphy에 이용되는 방사성의약품의 사용제한으로 인한 대체 방사성의약품의 성능평가)

  • Seo, Young-Deok;Jeong, Jae-Hun;Moon, Jong-Woon;Yun, Sang-Hyeok;Kim, Yeong-Seok;Kang, Se-Hun;Won, Woo-Jae;Kim, Seok-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • Purpose: Several radioactive agents were used for lymphoscintigraphy in breast cancer. But recently, due to the change of local radiopharmaceutical licensing policy and discontinuation of supplies from manufacturer, we could not use many radiocolloids such as $^{99m}Tc$-Antimony Trisulfide Colloid, $^{99m}Tc$-Tin Colloid, $^{99m}Tc$-Human Serum Albumin. So it is necessary to use the substitution radiopharmaceutical. Therefore, this study aims to evaluate the performance of substitution radiopharmaceutical ($^{99m}Tc$-Phytate) including the existing radiocolloids and to set up of the appropriate protocol in lymphoscintigraphy. Materials and Methods: For each radiocolloids ($^{99m}Tc$-Antimony Trisulfide Colloid (ASC), $^{99m}Tc$-Tin Colloid (TC), $^{99m}Tc$-Human Serum Albumin (HSA), $^{99m}Tc$-Phytate) were performed the particle size by Zeta Sizer (Nano-ZS) and we compared the radiolabeling time, procedure and acquisition time for each of the radiocolloids (total 200 patients). For the last time, we made an analysis of image for each of the radiocolloids with our previous report (SJ Jang et al, Korean Nucl Med Mol imaging Vol.41, No.6, Dec 2007). Results: The particle size of each radiocolloids showed A.S.C (50 nm), T.C (310 nm), H.S.A (10.8 nm), $^{99m}Tc$-Phytate (499 nm). The labeling and acquisition time for each of the radiocolloids showed no substantial difference. But there is difference of the labeling time for the A.S.C. because the ASC procedure need to boiling process. There were no significant differences among those radiocolloids (p>0.005) in the identification rate (IR), false negative rate (FNR), and negative predictive value (NPV). Conclusions: $^{99m}Tc$-labeled radiocolloids showed equivalent results in lymphoscintigraphy. Therefore, in this exam of each radiocolloids could be applied appropriate protocol in lymphoscintigraphy.

  • PDF

Studies on the Physiological Characteristics of Bacterial Leaf Blight Pathogen of rice, Xanthomonas oryzae Dowson (벼 흰빛잎마름병균의 생리적 성상에 관한 시험)

  • Choi Yong Chul;Lee Kyung Whee;Cho Eui Kyoo
    • Korean journal of applied entomology
    • /
    • v.10 no.2
    • /
    • pp.97-101
    • /
    • 1971
  • 1. The experiment was conducted to investigate the physiological characteristics on ten isolates of bacterial leaf blight pathogen of rice, Xanthomenas eryzae Dowson. Seven out of tin isolates were isolated from infected leaves of various rice varieties including IR strains in Korea. Isolates S-20 and S-103 were originated from IRRI in Philippines, and isolate H-5809 was allocated by National Institute of Agricultural Science in Japan. 2. All isolates Produced hydrogen sulfide and ammonia 9as from peptone sol. media, and reduced methylen blue, Gelatin liquefaction occurred by all isolates tested, although each isolate showed different degree of liquefaction No coagulation of the casein in milk by the isolates was observed, though some amount of acid production occurred in litmus milk by ail isolates tested. 3. All isolates utilized glucose and galactose, and slight utilization of esculin, mannitol, raffinose, salicin and saccharose was observed. Lactose, starch and dextrin, however, were not utilized at all by all isolates tested in the study.

  • PDF