• 제목/요약/키워드: tin layer

Search Result 474, Processing Time 0.03 seconds

Study of ITO/ZnO/Ag/ZnO/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode on Polymer Substrate

  • Han, Jin-Woo;Han, Jeong-Min;Kim, Byoung-Yong;Kim, Young-Hwan;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.798-801
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided (ITO)/zinc oxide (ZnO)/Ag/zinc oxide (ZnO)/ITO. With about 50 nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550 nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

Feasibility of Indium Tin Oxide (ITO) Swarf Particles to Transparent Conductive Oxide (TCO)

  • Hong, Sung-Jei;Yang, DuckJoo;Cha, Seung Jae;Lee, Jae-Yong;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.50-53
    • /
    • 2015
  • Indium (In) is widely used for transparent electrodes of photovoltaics as a form of indium tin oxide (ITO) due to its superior characteristics of environmental stability, relatively low electrical resistivity and high transparency to visible light. However, In has been worn off in proportion to growth the In related market, and it leads to raise of price. Although In is obtained from ITO target scarps, much harmful elements are used for the recycling process. To decrease of harmful elements, ITO swarf particles obtained from target scraps was characterized whether it is feasible to transparent conductive oxide (TCO). The ITO swarf was crushed with milling process, and it was mixed with new ITO nanoparticles. The mixed particles were well dispersed into ink solvent to make-up an ink, and it was well coated onto glass substrate. After heat-treatment at $400^{\circ}C$ under $N_2$ rich environments, optical transmittance at 550 nm and sheet resistance of the ITO ink coated layer was 71.6% and $524.67{\Omega}/{\square}$, respectively. Therefore, it was concluded that the ITO swarf was feasible to TCO of touch screen panel.

ITO/ZnO/Ag/ZnO/ITO Multilayers Films for the Application of a Very Low Resistance Transparent Electrode on Polymer Substrate

  • Ok, Chul-Ho;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.397-397
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided(ITO)/zinc oxide(ZnO)/Ag/oxide(ZnO)/ITO. With about 50nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

  • PDF

Wear of the Alumina Short Fiber Reinforced Tin-Bronze Matrix Composites at the Room Temperature and an Elevated Temperature (알루미나 단섬유 보강 청동기지 복합재의 상온 및 고온 마모)

  • 최준호;허무영
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.45-52
    • /
    • 1995
  • The wear behavior of alumina short fiber reinforced tin-bronze matrix composites was studied at the room temperature and an elevated temperature. The effect of the composition of specimens and the variation of wear conditions on the wear properties was examined by a pin-on-disc type wear testing machine. The wear mechanism according to the compositon of specimens at various wear conditions was discussed by the observation of the microstructure and the analysis of the composition on the worn surfaces. A thicker oxide layer on worn surfaces led to a lower wear loss because of the lubricating effect of oxide layers between pin and disc. As the testing temperature was raised to 350$^{\circ}$C, the fiber reinforced composites exibited markedly increased wear resistance even at a higher applied load since the reinforcement of composites with alumina fibers was not affected to a large extent by raising temperature. The results obtained by AES and EDS analysis indicated that the oxide layer of the worn surfaces formed at 350$^{\circ}$C was proved as Fe-oxide. This was explained by the faster formation of Fe-oxide than Cu-oxide at 350$^{\circ}$C.

Improving the Light Extraction Efficiency of GRIN Coatings Pillar Light Emitting Diodes

  • Moe, War War;Aye, Mg;Hla, Tin Tin
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.293-300
    • /
    • 2022
  • This study investigated a graded-refractive-index (GRIN) coating pattern capable of improving the light extraction efficiency of GaN light-emitting diodes (LEDs). The planar LEDs had total internal reflection thanks to the large difference in refractive index between the LED semiconductor and the surrounding medium (air). The main goal of this paper was to reduce the trapped light inside the LED by controlling the refractive index using various compositions of (TiO2)x(SiO2)1-x in GRIN LEDs consisting of five dielectric layers. Several types of multilayer LEDs were simulated and it was determined the transmittance value of the LEDs with many layers was greater than the LEDs with less layers. Then, the specific ranges of incident angles of the individual layers which depend on the refractive index were evaluated. According to theoretical calculations, the light extraction efficiency (LEE) of the five-layer GRIN is 25.29 %, 28.54 % and 30.22 %, respectively. Consequently, the five-layer GRIN LEDs patterned enhancement outcome LEE over the reference planar LEDs. The results suggest the increased light extraction efficiency is related to the loss of Fresnel transmission and the release of the light mode trapped inside the LED chip by the graded-refractive-index.

Fabrication of Laminated Multi-layer Flexible Substrate with Cu/Sn Via (Cu/Sn 비아를 적용한 일괄적층 방법에 의한 다층연성기판의 제조)

  • Lee H. J.;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.1-5
    • /
    • 2004
  • A multi-layer flexible substrate is composed of copper(Cu)/polyimide that are known as good electrical conductivity, and low dielectric constant, respectively. In this study. conductor line of $5{\mu}m$-pitch was successfully fabricated without non-uniform pattern shape by electroplating copper and coating polyimide on patterned stainless steel. For multi-layer flexible substrate, via holes were drilled by UV laser and filled with electroplating copper and tin. And then, the PI layer with vias and conductor lines was stripped from stainless steel substrate. The PI layers were laminated at once with careful alignment between layers. Solid state reaction between tin and copper during lamination formed the intermetallic compounds of $Cu_6Sn_5$($\eta$-phase) and $Cu_3Sn$($\epsilon$-Phase) and achieved a complete inter-connection by vertically positioning the plugged via holes on via pad. The via formation process has several advantages; such as better electrical property and lower cost than V type via and paste via.

  • PDF

Electro-optical characteristic analysis of liquid crystal cell using UV-treated self assembled monolayer (UV 처리된 자기 조립 단분자막을 사용한 액정 셀의 전기광학특성 분석)

  • Chan-Woo Oh;Hong-Gyu Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we demonstrated the orientation characteristics of liquid crystals using UV-treated FSAM as alignment layer. Moreover we confirmed the FSAM properties before and after UV treatment on indium tin oxide (ITO) glass substrates using physicochemical analysis. The hydrophobic property of the FSAM surface is change to hydrophilic through UV treatment. After UV treatment the LC molecules also were uniformly and horizontally aligned on the FSAM surfaces and the pretilt angle was obviously changed 90° degrees to 0° degrees. EO characteristic of TN cell which was fabricated with UV-treated FSAM was faster response time compare to conventional PI layer. The FSAM before and after UV treatment has a superior application potential as the LC alignment layer for LCD, potentially replacing the conventional polyimide layer.

Temperature Maintenance of an ITO Nanoparticle Film Heater (ITO 나노입자 면상발열체의 온도유지에 대한 연구)

  • Yang, Kyungwhan;Cho, Kyoungah;Im, Kiju;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.171-173
    • /
    • 2016
  • In this study, we fabricate a high efficiency heater consisting of the indium tin oxide (ITO) nanoparticle (NP)-paste and polydimethylsiloxane (PDMS) and investigate the effect of PDMS on temperature maintenance of the heater through the comparison with the PDMS-free ITO film heater. Compared to the ITO film heater, the temperature of the PDMS/ITO film heater lasts 1.5 times longer. And the power consumption of the PDMS/ITO film heater is reduced by 35%, owing to the low thermal conductivity of the PDMS layer.

Microstructure and Critical Current Density of $Nb_3$Sn wire processed by Internal Tin Method (내부확산법으로 제조한 $Nb_3$Sn선재의 미세조직 및 임계전류밀도특성)

  • 김상철;오상수;하동우;하홍수;류강식;권해웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1022-1026
    • /
    • 1998
  • The mutifilamentary $Nb_3$Sn wire containing 135 Nb filaments was manufactured by the internal tin method. The critical current density ($J_C$) in magnetic fields for the wires heat-treated at $660^{/circ}C$ and $700^{/circ}C$ were investigated. The Non-Cu $J_C$ and n-value of 0.82 mm$\phi$ $Nb_3$Sn wire heat-treated at $700^{/circ}C$ for 240 hours was approximately 450 A/$mm^2$ at 12T, 4.2K and 14, respectively. Also the $B_{C2}$ of $Nb_3$Sn wire extrapolated by Kramer plot was 27.2T. The wire heat-treated at $700^{/circ}C$ for 240 hours showed smaller residual tin concentration in the matrix and the larger area of $Nb_3$Sn layer as comparison with the wire heat-treated at $660^{/circ}C$.

  • PDF

Characteristics of Indium Tin Zinc Oxide Thin Film Transistors with Plastic Substrates (고분자 기판과 PECVD 절연막에 따른 ITZO 박막 트랜지스터의 특성 분석)

  • Yang, Dae-Gyu;Kim, Hyoung-Do;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.247-253
    • /
    • 2018
  • We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below $350^{\circ}C$. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and $H_2O$ increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., $Al_2O_3$) that can sufficiently prevent the diffusion of impurities into the channel.