• Title/Summary/Keyword: timosaponin A-III

Search Result 8, Processing Time 0.022 seconds

Pharmacological Comparison of Timosaponin A III on the 5-beta Reductase and Androgen Receptor via In Silico Molecular Docking Approach (In silico 약리학적 분석을 통한 티모사포닌 A III의 5-베타 리덕타아제 단백질 및 안드로겐 수용체 단백질 활성 부위에 대한 결합 친화도 비교 연구)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.307-313
    • /
    • 2018
  • Alopecia cause psychological stress due to their effect on appearance. Thus, the global market size of the alopecia treatment products are growing quickly. Timosaponin A III is the well known active ingredient of Anemarrhenae Rhizoma. In this study, we investigated and compared the binding affinity of timosaponin A III with finasteride (5-beta reductase antagonist) and minoxidil (androgen receptor antagonist) on the target protein active site by in silico computational docking studies. The three dimensional crystallographic structure of 5-beta reductase (PDB ID : 3G1R) and androgen receptor (PDB ID: 4K7A) was obtained from PDB database. In silico computational autodocking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm option based on scoring functions. The timosaponin A III showed optimum binding affinity (docking energy) with 5-beta reductase as -12.20 kcal/mol as compared to the finasteride (-11.70 kcal/mol) and with androgen receptor as -9.00 kcal/mol as compared to the minoxidil (-7.40 kcal/mol). The centroid X, Y, Z grid position of the timosaponin A III on the 5-beta reductase was similar (overlap) to the finasteride, but the X, Y, Z centroid grid of the timosaponin A III on the androgen receptor was significantly far from the minoxidil centroid position. These results significantly indicated that timosaponin A III could be more potent antagonist to the 5-beta reductase and androgen receptor. Therefore, the extract of Anemarrhenae Rhizoma or timosaponin A III containing biomaterials can substitute the finasteride and minoxidil and can be applied to the alopecia protecting product and related industrial fields.

Isolation and HPLC Analysis of Timosaponin A III from Rhizomes of Anemarrhena asphodeloides $B_{UNGE}$ (지모의 유효성분 분리 및 HPLC 정량 분석)

  • Kim, Geum-Soog;Park, Chang-Kie;Seong, Jae-Duck;Kim, Hyun-Tae;Han, Sang-Ik;Kwack, Yong-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • Timosaponin A III, an active and major compound, was isolated from rhizomes of Anemarrhena asphodeloides. The quantitative analysis of timosaponin AIII was performed by a high performance liquid chromatographic(HPLC) method using ELSD and the useful extraction method for HPLC analysis was examined as well. This HPLC method can be utilized as the standard analytical method for the evaluation of the quality of Anemarrhena rhizoma in the steps of breeding and cultivation. Additionally, the HPLC analysis method can be useful for the evaluation of the quality of Anemarrhena rhizoma sold as a traditional medicine in current markets.

  • PDF

Therapeutic Potential of the Rhizomes of Anemarrhena asphodeloides and Timosaponin A-III in an Animal Model of Lipopolysaccharide-Induced Lung Inflammation

  • Park, Byung Kyu;So, Kyung Su;Ko, Hye Jung;Kim, Hyun Joong;Kwon, Ki Sun;Kwon, Yong Soo;Son, Kun Ho;Kwon, Soon Youl;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.553-559
    • /
    • 2018
  • Investigations into the development of new therapeutic agents for lung inflammatory disorders have led to the discovery of plant-based alternatives. The rhizomes of Anemarrhena asphodeloides have a long history of use against lung inflammatory disorders in traditional herbal medicine. However, the therapeutic potential of this plant material in animal models of lung inflammation has yet to be evaluated. In the present study, we prepared the alcoholic extract and derived the saponin-enriched fraction from the rhizomes of A. asphodeloides and isolated timosaponin A-III, a major constituent. Lung inflammation was induced by intranasal administration of lipopolysaccharide (LPS) to mice, representing an animal model of acute lung injury (ALI). The alcoholic extract (50-200 mg/kg) inhibited the development of ALI. Especially, the oral administration of the saponin-enriched fraction (10-50 mg/kg) potently inhibited the lung inflammatory index. It reduced the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Histological changes in alveolar wall thickness and the number of infiltrated cells of the lung tissue also indicated that the saponin-enriched fraction strongly inhibited lung inflammation. Most importantly, the oral administration of timosaponin A-III at 25-50 mg/kg significantly inhibited the inflammatory markers observed in LPS-induced ALI mice. All these findings, for the first time, provide evidence supporting the effectiveness of A. asphodeloides and its major constituent, timosaponin A-III, in alleviating lung inflammation.

Stereoselective Biotransformation of Timosaponin A-III by Saccharomyces cerevisiae

  • Hu, Yong-Mei;Yu, Zhi-Ling;Fong, Wang-Fun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.582-589
    • /
    • 2011
  • Bioconversion of timosaponin A-III (TA-III), one of the major steroidal saponins isolated from the rhizomes of Anemarrhenae asphodeloides Bunge (Liliaceae), was investigated in Saccharomyces cerevisiae. Five bioconversion products, denoted compounds 2-6, were obtained. Biotransformation metabolite 2 was a stereoisomer of TAIII with a specific isotype F-ring and ${\beta}$-ranged $CH_3$-21, which rarely occurs in nature. The structure of 2 was elucidated by extensive spectroscopic analysis (H-H COSY, HSQC, HMBC), as well as by high-resolution mass spectral analysis. The growth inhibitory activity of compounds 1-6 was assayed against four human cancer cell lines, HepG2, H-1299, HT-29, and HCT-116. Compounds 1 and 2 obviously inhibited the growth of the four types of cancer cells with $IC_{50}$ values being less than 19${\mu}M$. A structure-activity relationship is discussed, and the spirostane-ring F in compounds 1 and 2 appears to be the critical bioactive moiety for the cell growth inhibitory property.

The saponin contents of cultivated Anemarrhena asphodeloides B$_{UNGE}$ in Korea (재배지모의 saponin 함량에 관한 연구)

  • 박재주
    • YAKHAK HOEJI
    • /
    • v.15 no.2
    • /
    • pp.64-75
    • /
    • 1971
  • Optimum condition for cultivation of Anemarrhena asphodeloides B$_{UNGE}$ and seasonal variation of saponin and sapogenin contents in the rhizome were investigated. It is confirmed that the best harvest time is 3rd year. Average contents of saponin in rhizome was 8.5% and 5.0%, in fibrous roots, being highest in winter. The facotrs of saponin content variation were seemed to be temperature and humidity. It was also proved that asphonin was the mixture of timosaponin A-III, timosaponin A-I and mangiferin. Mangiferin and isomangiferin were isolated from the flower.

  • PDF

Antitumor Agent from the Rhizome of Anemarrhena asphodeloides (지모(知母)의 항암활성성분에 관한 연구)

  • Lee, Seung-Ho;Ryu, Shi-Yong;Choi, Sang-Un;No, Zae-Sung;Kim, Sung-Ki;Lee, Chong-Ock;Ahn, Jong-Woong
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.1
    • /
    • pp.47-50
    • /
    • 1995
  • EtOAc soluble part of MeOH extract of Anemarrhena asphodeloides rhizome was evaluated for the cytotoxicity against the five kinds of human tumor cell lines (A-549, SK-OV-3, SK-MEL-2, XF498 and HCT15) in vitro. Bioassay-guided fractionation of EtOAc soluble part led to the isolation of active compound which was identified as timosaponin A-III showed potent cytotoxic activity, but its genin, sarsasapogenin, did not show cell growth inhibition.

  • PDF

The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals

  • Tan, Heng Kean;Moad, Ahmed Ismail Hassan;Tan, Mei Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6463-6475
    • /
    • 2014
  • The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.

Antimicrobial, Antioxidant and Cellular Protective Effects against Oxidative Stress of Anemarrhena asphodeloides Bunge Extract and Fraction (지모 뿌리 추출물과 분획물의 항균활성과 항산화 활성 및 세포보호 연구)

  • Lee, Yun Ju;Song, Ba Reum;Lee, Sang Lae;Shin, Hyuk Soo;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.360-371
    • /
    • 2018
  • Extracts and fractions of Anemarrhena asphodeloides Bunge were prepared and their physiological activities and components were analyzed. Antimicrobial activities of the ethyl acetate and aglycone fractions were $78{\mu}g/ml$ and $31{\mu}g/ml$, respectively, for Staphylococcus aureus and $156{\mu}g/ml$ and $125{\mu}g/ml$, respectively, for Pseudomonas aeruginosa. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activities ($FSC_{50}$) of 50% ethanol extract, ethyl acetate fraction, and aglycone fraction of A. asphodeloides extracts were $146.2{\mu}g/ml$, $23.19{\mu}g/ml$, and $71.06{\mu}g/ml$, respectively. The total antioxidant capacity ($OSC_{50}$) in an $Fe^{3+}$-EDTA/hydrogen peroxide ($H_2O_2$) system were $17.5{\mu}g/ml$, $1.5{\mu}g/ml$, and $1.4{\mu}g/ml$, respectively. The cytoprotective effect (${\tau}_{50}$) in $^1O_2$-induced erythrocyte hemolysis was 181 min with $4{\mu}g/ml$ of the aglycone fraction. The ${\tau}_{50}$ of the aglycone fraction was approximately 4-times higher than that of (+)-${\alpha}$-tocopherol (${\tau}_{50}$, 41 min). Analysis of $H_2O_2$-induced damage of HaCaT cells revealed that the maximum cell viabilities for the 50% ethanol extract, ethyl acetate fraction, and aglycone fraction were 86.23%, 86.59%, and 89.70%, respectively. The aglycone fraction increased cell viability up to 11.53% at $1{\mu}g/ml$ compared to the positive control treated with $H_2O_2$. Analysis of ultraviolet B radiation-induced HaCaT cell damage revealed up to 41.77% decreased intracellular reactive oxygen species in the $2{\mu}g/ml$ aglycone fraction compared with the positive control treated with ultraviolet B radiation. The findings suggest that the extracts and fractions of A. asphodeloides Bunge have potential applications in the field of cosmetics as natural preservatives and antioxidants.