• 제목/요약/키워드: timing accuracy

검색결과 293건 처리시간 0.025초

MOS 로직 및 타이밍 시뮬레이션을 위한 데이타구조 및 알고리즘 (A data structure and algorithm for MOS logic-with-timing simulation)

  • 공진흥
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.206-219
    • /
    • 1996
  • This paper describes a data structure and evaluation algorithm to improve the perofmrances MOS logic-with-timing simulation in computation and accuracy. In order to efficiently simulate the logic and timing of driver-load networks, (1) a tree data structure to represent the mutual interconnection topology of switches and nodes in the driver-lod network, and (2) an algebraic modeling to efficiently deal with the new represetnation, (3) an evaluation algorithm to compute the linear resistive and capacitive behavior with the new modeling of driver-load networks are developed. The higher modeling presented here supports the structural and functional compatibility with the linear switch-level to simulate the logic-with-timing of digital MOS circuits at a mixed-level. This research attempts to integrate the new approach into the existing simulator RSIM, which yield a mixed-klevel logic-with-timing simulator MIXIM. The experimental results show that (1) MIXIM is a far superior to RSIM in computation speed and timing accuracy; and notably (2) th etiming simulation for driver-load netowrks produces the accuracy ranged within 17% with respect ot the analog simulator SPICE.

  • PDF

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Seok-Hwan LEE;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • 제7권2호
    • /
    • pp.39-51
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

오피스용 3 차원 실물 복제기를 위한 타이밍 벨트 시스템의 고속.고 정밀 제어 (High Speed and Accuracy Control of Timing Belt System for SFFS of Office)

  • 이현정;김정수;이민철;김동수;이원희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.339-342
    • /
    • 2004
  • The x-y table of the SFFS to move a printer head must be the system that has a high speed and accuracy. So we propose the SMCSPO algorithm on the timing belt system. The major contribution is the design of a robust observer for the state and the perturbation of the timing belt system, which is combined with a robust controller. The control performance of the proposed algorithm is compared with PD control by the experiments. The results of SMCSPO algorithm showed more accuracy and better performance than PD control. Therefore we may apply the algorithms to a high speed and accuracy control for SFFS.

  • PDF

피이드백 효과를 고려한 파형이완 방식에 의한 Timing Simulator (Timing Simulator by Waveform Relaxation Considering the Feedback Effect)

  • 전영현;이창우;이기준;박송배
    • 대한전자공학회논문지
    • /
    • 제24권2호
    • /
    • pp.347-354
    • /
    • 1987
  • Timing simulators are widely used nowadays for analyzing large-scale MOS digital circuits, which, however, have several limitations such as nonconvergence and/or in accuracy for circuits containing tightly coupled feedback elements or loops. This paper describes a new timing simulator which aims at solving these problems. The algorithm employed is based on the wave-form relaxation method, but exploits the signal flow along the feedback loops. Each of feedback loops is treated as one circuit block and then local iterations are performed to enhance the timing simulation. With these techniques, out simulator can analyze the MOS digital circuits with up to 5-20 times of the magnitude speed improvemnets as compared to SPICE2, while maintaining the accuracy.

  • PDF

고속 디지털 시스템에서 전달 시간차의 보정 모델링 및 구현 (The timing do-skew modeling and design in a high speed digital system)

  • 오광석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.601-604
    • /
    • 2002
  • In this paper, the timing do-skew modeling for a high speed logic tester channels is developed. The time delay of each channel in a logic tester are different from other channels and it can produce timing error in a test. To get the best timing accuracy in the test with a logic tester, the timing skew must be compensated. The timing skew of channels is due to the difference of time delay of pin-electronics devices composing channels and length of metal line placed on PCB. The expected timing difference of channels can be calculated according to the specifications of pin electronics devices and strip line modeling of PCB. With the calculated delay time, the timing skew compensation circuit has been designed. With the timing skew compensation circuit, the timing calibration of a logic tester can be peformed easily and automatically without other time measuring instruments. The calibration method can then be directly applied to logic testers in mass production lines.

  • PDF

Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권1호
    • /
    • pp.35-41
    • /
    • 2017
  • Precise Point Positioning (PPP) method is based on dual-frequency data of Global Navigation Satellite Systems (GNSS). The recent multi-constellations GNSS (multi-GNSS) enable us to bring great opportunities for enhanced precise positioning, navigation, and timing. In the paper, the multi-GNSS PPP with a combination of four systems (GPS, GLONASS, Galileo, and BeiDou) is analyzed to evaluate the improvement on positioning accuracy and convergence time. GNSS observations obtained from DAEJ reference station in South Korea are processed with both the multi-GNSS PPP and the GPS-only PPP. The performance of multi-GNSS PPP is not dramatically improved when compared to that of GPS only PPP. Its performance could be affected by the orbit errors of BeiDou geostationary satellites. However, multi-GNSS PPP can significantly improve the convergence speed of GPS-only PPP in terms of position accuracy.

Trend and Analysis of Protection Level Calculation Methods for Centimeter-Level Augmentation System in Maritime

  • Jaeyoung Song;TaeHyeong Jeon;Gimin Kim;Sang Hyun Park;Sul Gee Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.281-288
    • /
    • 2023
  • The International Maritime Organization (IMO) states that the recommended horizontal accuracy for coastal and offshore areas is 10 m, the Alert Limit (AL) is 25 m, the time to alert is 10 seconds, and the integrity risk (IR) is 10-5 per three hours. For operations requiring high accuracy, such as tugs and pushers, icebreakers, and automated docking, the IMO dictates that a high level of positioning accuracy of less than one meter and a protection level of 0.25 meters (for automated docking) to 2.5 meters should be achieved. In this paper, we analyze a method of calculating the user-side protection level of the centimeter-level precision Global Navigation Satellite System (GNSS) that is being studied to provide augmentation information for the precision Positioning, Navigation and Timing (PNT) service. In addition, we analyze standardized integrity forms based on RTCM SC-134 to propose an integrity information form and generate a centimeter-level precise PNT service plan.

시각적 자극 속도에 대한 농구패스 유형이 예측 타이밍 수행에 미치는 융합적 효과 (The Convergence Effects of Visual Stimulus Velocity and Basketball Pass Types on Anticipation Timing Performance)

  • 홍승분
    • 한국융합학회논문지
    • /
    • 제8권8호
    • /
    • pp.325-332
    • /
    • 2017
  • 이 연구의 목적은 리시버의 움직임을 모사한 불빛자극의 이동속도와 농구 패스 유형에 따라 예측 타이밍 수행에 어떠한 영향을 미치는지 알아보는데 있다. 실험을 위해 10명의 대학생에게 세 가지 이동속도를 무선으로 제시한 후 불빛자극이 목표지점에 도착하는 시점과 일치되게 체스트 패스와 바운드 패스를 수행하도록 하였다. 실험과제는 패스 유형별로 각 속도조건 당 4회씩 수행하여 총 24회가 무선으로 제시되었으며, 매 시행마다 항상오차, 절대오차 그리고 가변오차를 측정하였다. 그 결과, 세 가지 시간오차는 가속조건일수록 크게 나타났으며 체스트패스가 바운드패스에 비해 타이밍의 정확성이 높게 나타났다. 이러한 연구 결과들을 통해 자극의 이동속도와 농구패스의 유형이 패스의 예측 타이밍 수행에 영향을 미치는 주요 변인임을 확인하였다.

A Study on Deep Reinforcement Learning Framework for DME Pulse Design

  • Lee, Jungyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.113-120
    • /
    • 2021
  • The Distance Measuring Equipment (DME) is a ground-based aircraft navigation system and is considered as an infrastructure that ensures resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. The main problem of DME as a GNSS back up is a poor positioning accuracy that often reaches over 100 m. In this paper, a novel approach of applying deep reinforcement learning to a DME pulse design is introduced to improve the DME distance measuring accuracy. This method is designed to develop multipath-resistant DME pulses that comply with current DME specifications. In the research, a Markov Decision Process (MDP) for DME pulse design is set using pulse shape requirements and a timing error. Based on the designed MDP, we created an Environment called PulseEnv, which allows the agent representing a DME pulse shape to explore continuous space using the Soft Actor Critical (SAC) reinforcement learning algorithm.