• 제목/요약/키워드: timelike Frenet curve

검색결과 3건 처리시간 0.013초

SOME INTEGRAL CURVES ASSOCIATED WITH A TIMELIKE FRENET CURVE IN MINKOWSKI 3-SPACE

  • Duldul, Bahar Uyar
    • 호남수학학술지
    • /
    • 제39권4호
    • /
    • pp.603-616
    • /
    • 2017
  • In this paper, we give some relations related with a spacelike principal-direction curve and a spacelike binormal-direction curve of a timelike Frenet curve. The Darboux-direction curve and the Darboux-rectifying curve of a timelike Frenet curve in Minkowski 3-space $E^3_1$ are introduced and some characterizations related with these associated curves are given. Later we define the spacelike V-direction curve which is associated with a timelike curve lying on a timelike oriented surface in $E^3_1$ and present some results together with the relationships between the curvatures of this associated curve.

NON-DEVELOPABLE RULED SURFACES WITH TIMELIKE RULING IN MINKOWSKI 3-SPACE

  • YANG, YUN;YU, YANHUA
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1339-1351
    • /
    • 2015
  • In this paper, using pseudo-spherical Frenet frame of pseudo-spherical curves in hyperbolic space, we define the notion of the structure functions on the non-developable ruled surfaces with timelike ruling. Then we obtain the properties of the structure functions and a complete classification of the non-developable ruled surfaces with timelike ruling in Minkowski 3-space by the theories of the structure functions.

ON THE SPHERICAL INDICATRIX CURVES OF THE SPACELIKE SALKOWSKI CURVE WITH TIMELIKE PRINCIPAL NORMAL IN LORENTZIAN 3-SPACE

  • Birkan Aksan;Sumeyye Gur Mazlum
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.513-541
    • /
    • 2023
  • In this paper, we calculate Frenet frames, Frenet derivative formulas, curvatures, arc lengths, geodesic curvatures according to the Lorentzian 3-space ℝ31, Lorentzian sphere 𝕊21 and hyperbolic sphere ℍ20 of the spherical indicatrix curves of the spacelike Salkowski curve with the timelike principal normal in ℝ31 and draw the graphs of these indicatrix curves on the spheres.