• Title/Summary/Keyword: time-varying signal

Search Result 380, Processing Time 0.031 seconds

The Effect of Phase Noise from PLL Frequency Synthesizer (PLL 주파수 합성기에서 발생하는 위상잡음의 영향)

  • 조형래;최정수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.865-870
    • /
    • 2001
  • In this paper, we analyse the effect of phase noise from PLL frequency synthesizer on 64 QAM when detecting corrupted signals. To predict the phase noise of an oscillator very accurately, we assume that the oscillator is linearly time-varying when the input impulsive current to the oscillator is small. The performance of the detector which detects the corrupted signal by oscillator phase noise is compared with that when the detector is only affected by AWGN and then analyse how much the phase noise degrades the system performance for 64 QAM.

  • PDF

Analysis of Object Color Sensory Evoked Potentials Using Time Varying Filtering (시변 필터링에 의한 물체색각 유발뇌파 해석)

  • 양호은;최갑석
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.39-46
    • /
    • 1992
  • This paper proposes the method that evoked potentials stimulated by object colors are analyzed and examined on the phenomemon of color sensory. The method which is used to estimate the signal is time-varying. filtering (TVF). At the results of experiment which used object colors, it is shown that color sensory times of red are within the range of 0.0~0.25[sec], those of yellow are within the range of 0.25~0.55[sec], and those of blue are within the range of 0.55~0.75[sec]; they are inclined to sequence in accending order as red, yellow, and blue.

  • PDF

Equalization Performance according to the Step Change Speed Value for adaptation in VS-CCA using Nonlinear Function of Error Signal (오차 신호의 비선형 함수를 이용하는 VS-CCA에서 적응을 위한 step 변화 속도값에 따른 등화 성능)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.27-32
    • /
    • 2020
  • This paper compare the adaptive equalization performance according to the values of adaptive step variation speed for adapting in VS-CCA (Variable Stepsize-Compact Constellation Algorithm) based on nonlinear function function of error signal. The VS-CCA algorithm compacts the 16-QAM nonconstant modulus signal into the 4 groups of 4-QAM constant modulus signal constellation in quadature plane, then the error signal is generated using the constant modulus of transmitted signal statistics. The adaptive equalizer coefficient were updated in order to achieve the minimum cost function by varying step based on the nonlinear function of error signal. In this time, the instantaneous adaptive step is determined according to the value of step variation speed of nonlinear function and the different equalization performance were obtained according to the step variation speed value. The equalizer internal index and external index which represents the robustness of external noise were used for the performance comparison index. As a result of computer simulation, it was confirmed that the value of variation speed less than 1.0 give more superior in every performance index compared to the greater than 1.0 in steady state.

A Robust Discrete-Time Model Reference Adaptive Control in the Presence of Bounded Disturbances (제한된 외란하에서의 강인한 이산 시간 모델 추종 적응 제어)

  • 이호진;함운철;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1618-1624
    • /
    • 1988
  • In this paper, a robust discrete model reference adaptive controller is proposed using a generalized model reference adaptive algorithm for single-input single-output discrete systems. A signal dependent time-varying dead-zone is employed in a generalized adaptive control structure. This adaptive controller is shown to assure the boundedness of the signals of the system even in the presence of bounded external disturbance.

  • PDF

Investigation of Perfusion-weighted Signal Changes on a Pulsed Arterial Spin Labeling Magnetic Resonance Imaging Technique: Dependence on the Labeling Gap, Delay Time, Labeling Thickness, and Slice Scan Order (동맥스핀표지 뇌 관류 자기공명영상에서 라벨링 간격 및 지연시간, 표지 두께, 절편 획득 순서의 변화에 따른 관류 신호변화 연구)

  • Byun, Jae-Hoo;Park, Myung-Hwan;Kang, Ji-Yeon;Lee, Jin-Wan;Lee, Kang-Won;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.108-118
    • /
    • 2013
  • Currently, an arterial spin labeling (ASL) magnetic resonance imaging (MRI) technique does not routinely used in clinical studies to measure perfusion in brain because optimization of imaging protocol is required to obtain optimal perfusion signals. Therefore, the objective of this study was to investigate changes of perfusion-weighed signal intensities with varying several parameters on a pulsed arterial spin labeling MRI technique obtained from a 3T MRI system. We especially evaluated alternations of ASL-MRI signal intensities on special brain areas, including in brain tissues and lobes. The signal targeting with alternating radiofrequency (STAR) pulsed ASL method was scanned on five normal subjects (mean age: 36 years, range: 29~41 years) on a 3T MRI system. Four parameters were evaluated with varying: 1) the labeling gap, 2) the labeling delay time, 3) the labeling thickness, and 4) the slice scan order. Signal intensities were obtained from the perfusion-weighted imaging on the gray and white matters and brain lobes of the frontal, parietal, temporal, and occipital areas. The results of this study were summarized: 1) Perfusion-weighted signal intensities were decreased with increasing the labeling gap in the bilateral gray matter areas and were least affected on the parietal lobe, but most affected on the occipital lobe. 2) Perfusion-weighted signal intensities were decreased with increasing the labeling delay time until 400 ms, but increased up to 1,000 ms in the bilateral gray matter areas. 3) Perfusion-weighted signal intensities were increased with increasing the labeling thickness until 120 mm in both the gray and white matter. 4) Perfusion-weighted signal intensities were higher descending scans than asending scans in both the gray and white matter. We investigated changes of perfusion-weighted signal intensities with varying several parameters in the STAR ASL method. It should require having protocol optimization processing before applying in patients. It has limitations to apply the ASL method in the white matter on a 3T MRI system.

A Study on Channel Equalization in Time Varying Channels for Mobile Communication System (이동통신 시스템의 Time Varying 채널 환경에서 채널 등화에 관한 연구)

  • Park No-Jin;Kim Dong-Ok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The third generation mobile communications system requiring the reliable multimedia data transmission has provided with the reliable voice, data and video services over the variable propagation environment. However the broadband wireless multiple access technologies cause Inter Symbol Interference(ISI) or Multiple Access Interference(MAI) to degrade the performance of CDMA(Code Division Multiple Access) system. Constant Modulus Algorithm which is frequently used as the adaptive blind equalizers to remove the interfering signal has ill-convergence phenomenon without proper initialization. In this paper, new blind equalization method based on conventional CMA is proposed to improve the channel efficiency, and through computer simulation this is tested over the time varying fading environment of mobile communication system. consequently, new blind equalization method into concatenated Kalman filter with CMA is verified better than conventional CMA through adopting minimum mean square errors and eye-pattern obtained from algorithm are compared.

Similarity between a stagnant point diffusion flame and an evolving jet diffusion flame (전개확산제트화염과 정체점 확산화염과의 유사성)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.494-502
    • /
    • 1997
  • Experiments on corresponding jet flames with stagnant point diffusion flames have been carried out in initial injection periods. A compensated measurement of maximum flame temperature, which is based on the ion signal, has been employed to inspect flame responses to time-varying strain rates. The flame responses are obtained at two conditions for the slowly time-varying strain rate and the case of flame extinction, and analyzed to confirm similarity between a stagnant point diffusion flame and an evolving jet diffusion flame. Nonsteady effects are addressed via the comparison between several time scales. The time variation with low strain rates, in which illustrates the flame behavior of the upper branch far from extinction in the well-known S-curve, is confirmed to produce a quasi-steady flame response through the nonsteady experiments. The time variation with strain rates in the case of flame extinction indicates an unsteady effect of flame response. It is therefore found that the flame responses near jet tip depend on time histories of characterized strain rates in the developing process.

Adaptive Chaos Control of Time-Varying Permanent-Magnet Synchronous Motors (시변 영구자석형 동기 전동기의 적응형 카오스 제어)

  • Jeong, Sang-Chul;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • Chaotic behavior in motor systems is undesired dynamics in real-time implementation since the speed is oscillated in a wide range and the torque is changed by a random manner. We present an adaptive control approach for time-varying permanent-magnet synchronous motors (PMSM) with chaotic phenomenon. We consider that its parameters are changed randomly within certain bounds. First, a nonlinear system model of a PMSM is transformed to derive a nominal linear control strategy. Then, an auxiliary control for compensating real-time control error occurred by system perturbation due to parameter change is designed by using Lyapunov stability theory. Numerical simulation is accomplished for evaluating its efficiency and reliability comparing with the traditional control method. Additionally, we test our control method in real-time motor experiment including a PSoC based drive system to demonstrate its practical applicability.

  • PDF

A study on the progressive tool wear and acoustic emission signals in milling process (밀링가공시 발생하는 공구마멸과 AE신호에 관한 연구)

  • 황홍연;이병찬;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1035-1042
    • /
    • 1988
  • The acoustic emission(AE) signal is monitored in milling operation in order to investigate the relationship between the progressive tool wear and the AE signals. A signal processing technique so called time domain averaging(TDA) is presented for the elimination of the influences of the noise imbedded in the periodic signals. The relationship between the progressive tool wear and the AE signals is investigated by varying the cutting speed, feed, depth of cut and the number of insert. From the measured data, it is observed that the averaged level of the AE signal increases at first with the increase of flank wear to a certain critical value, and then stays almost constant or fluctuates with further increase of the flank wear.

Optimal Signal Segment Length for Modified Run-test and RA(reverse arrangement)-test for Assessing Surface EMG Signal Stationarity (표면근전도 신호의 정상성 검사를 위한 수정된 Run-검증과 RA-검증에 최적인 신호분할 길이)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1128-1133
    • /
    • 2014
  • Most of the statistical signal analysis processed in the time domain and the frequency domain are based on the assumption that the signal is weakly stationary(wide sense stationary). Therefore, it is necessary to know whether the surface EMG signals processed in the statistical basis satisfy the condition of the weak stationarity. The purpose of this study is to find optimal segment length of surface EMG signal for assessing stationarity with the modified Run-test and RA-test. Ten stationary surface EMG signals were simulated by AR(autoregressive) modeling, and ten real surface EMG signals were recorded from biceps brachii muscle and then modified to have non-stationary structures. In condition of varying segment length from 20ms to 100ms, stationarity of the signals was tested by using six different methods of modified Run-test and RA-test. The results indicate that the optimal segment length for the surface EMG is 30ms~35ms, and the best way for assessing surface EMG signal stationarity is the modified Run-test (Run2) method using this optimal length.