• Title/Summary/Keyword: time-varying characteristics

Search Result 650, Processing Time 0.032 seconds

Analysis on Current Characteristics According to Injection Method and Driving Waveform in Electrophoretic-Type E-Paper Display (전기영동형 전자종이 디스플레이에서 전자잉크의 주입 방법 및 구동파형에 따른 전류 특성 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.386-392
    • /
    • 2020
  • In this study, the drift current characteristics of charged particles are analyzed for panels fabricated by varying the waveform biasing of the active particle loading method (APLM), which is a method driven by the electrophoretic principle of loading charged particles into a cell of a barrier rib-type electronic paper. We prepare 3 panels using APLM and 1 panel without APLM. The waveform of APLM uses square wave and ramp wave, and the step voltage wave is applied to the driving voltage. The drift currents measured from the square wave and ramp wave with the same period applied by APLM are 4.872 µC and 5.464 µC, respectively, and the ramp wave is shown to be relatively advantageous for loading charged particles that have a large q/m. The time-current curve results confirm that the abrupt movement of charged particles is occurring. When the step form wave signal with a short time of 1s is first applied, initial large movement of the charged particles is confirmed to occur in all samples, which is understood as the effect of applying the voltage necessary to remove the imaging force. The results of this study are expected to improve the loading of charged particles into the electronic paper cell, driven by the electrophoretic principle and optimization of the driving conditions.

Experimental Investigations on the Characteristics of Explosion Mitigations by Different Concentrations of Agar Gel Barriers (Agar Gel Barrier의 농도변화에 따른 폭발완화 특성에 관한 실험적 연구)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.13-18
    • /
    • 2011
  • Experimental studies were carried out to investigate the characteristics of explosion mitigations by varying concentrations of agar gel barriers in an explosion chamber, 1400 mm in length, with a square cross-section of $100{\times}100mm^2$. Another extension chamber, $100{\times}100{\times}300mm^3$, was made to hold a gel barrier. Four different gel concentrations were used in the measurements: 2, 3, 4, 5 %(by weight of gel). Displacement of the gel barrier was measured using a high speed camera, and pressure development was measured using pressure transducers and a data acquisition system. It was found that as the concentrations of the gel barriers increased, the gel rupture time and the time taken to reach the maximum pressure increased. It was also found that the increment of gel concentrations increased the reduction percentage in the maximum pressure between before and after gel barrier.

Harmonics Assessment for an Electric Railroad Feeding System using Moments Matching Method (모멘트 정합 방법(Moment Matching Method)을 이용한 전기철도 급전시스템의 고조파 평가)

  • Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Generally, an electric railroad feeding system has many problems due to the different characteristics in contrast with a load of general three-phase AC electric power system. One of them is harmonics problem caused by the switching device existing in the feeding system, and moreover, the time-varying dynamic loads of rail way is inherently another cause to increase this harmonics problem. In Korea power systems, the electric railroad feeding system is directly supplied from the substation of KEPCO. Therefore, if voltages fluctuation or unbalanced voltages are created by the voltage and current distortion or voltage drop during operation, it affects directly the source of supply. The trainloads of electric railway system have non-periodic but iterative harmonic characteristics as operating condition, because the electric characteristic of the electric railroad feeding system is changed by physical conditions of the each trainload. According to the traditional study, the estimation of harmonics has been performed by deterministic way using the steady state data at the specific time. This method is easy to analyze harmonics, but it has limits in some cases which needs an assessment of dynamic load and reliability. Therefore, this paper proposes the probabilistic estimation method, moments matching method(MW) in order to overcome the drawback of deterministic method. In this paper, distributions for each harmonics are convolved to obtain the moments and cumulants of TDD(Total Demand Distortion), and this can be generalized for any number of trains. For the case study, the electric railway system of LAT(Intra Airport Transit) in Incheon International Airport is modeled using PSCAD/EMTDC dynamic simulator. The raw data of harmonics for the moments matching method is acquired from simulation of the LAT model.

FC-MMA Adaptive Equalization Algorithm to improve the Convergence Speed of MMA in 16-QAM System (16-QAM 시스템에서 MMA의 수렴 속도를 개선시킨 FC-MMA 적응 등화 알고리즘)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.93-99
    • /
    • 2014
  • This paper deals with the FC-MMA (Fast Convergence-Multi Modulus Algorithm) which is improving the convergence characteristics of the MMA (Multiple Modulus Algorithm) adaptive equalization algorithm that is used for the minimization of the intersymbol interference which occurs in the time dispersive communication channel. In the time varying charateristics and the abnormal situation like as outage of the communication channel, the adaptive equalizer needs to adapting the new environment more rapidly. For this problem, the residual isi and the maximum distortion performance index which are meaning the convergence characteristics are widely adapted in the adaptive equalizer. The 16-QAM signal is transmitted and it was confirmed that the proposed algorithm, the FC-MMA has the fast convergence performance such as in the 1.75 times fast in residual isi and 2.5 times fast in the maximum distortion in order to reaching the steady state compare to the MMA algorithm in the same channel environment by the computer simulation.

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF

Synthesis of Nanosized TiO$_2$ Powder by Chemical Vapor Condensation Process(1) (화학기상응축법에 의한 TiO$_2$ 나노분말의 합성 (1))

  • 김신영;유지훈;이재성;김종렬;김병기
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.742-750
    • /
    • 1999
  • Nanosized TiO2 powders were synthesized using the chemical vapor conduensation (CVC) process with various precursor feeding rates (0.37 and 0.752 ml/min) and oxygen flow rates(1-2slm) conditions and powder characteristics were investigated in terms of formation of nanosized powder varying with the above processing conditions. For this study the main thermodynamic and fluid dynamic factors -supersaturation ratio collision frequency and residence time-were theoretically established and compared to the characteristics of formed TiO2 powder. The loosely combined anatase phase powders (including less than 3%of rutile phase) having 20-30nm crystallite size were obtained at overall conditions. The particle size and th degree of agglomeration for a precursor flow rate of 0.376 ml/min turn out to be smaller than for a flow rate of 0.742ml/min. And the decreasing of particles size and particle size distribution were observed with increasing oxygen flow rate as the residence time and collision frequency were reduced by increasing oxygen flow rate,. It appears that further scrutiny is needed to elucidate the influence of the individual thermodynamic and kinetic parameters mdependently.

  • PDF

A Combustion Analysis of Surface Fuel Burning Experiment According to Density Variation (밀도에 따른 지표 연료의 연소실험 분석)

  • Kim, Eung-Sik;Kim, Jang-Hwan;Kim, Dong-Hyun;Park, Hyung-Ju;Kim, Jeong-Hun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This paper shows combustion characteristics of fallen leaves of Quercus variabilis and Pinus densiflora according to variation of mass densities. Combustion temperature, mass loss rate, flame height, duration of combustion and velocity of hot gas are measured and analyzed. For the experiment 10cm heighted baskets with varying diameters of 20, 30, 40 and 50cm are used for the combustion and the pilot ignition is carried on the top of the fuel. In case of Pinus densiflora mass loss rate, duration of flame, flame height and combustion time become larger as the mass density and diameter of basket increase, on the other hand Quercus variabilis shows saturation characteristics in mass loss rate and flame height. Velocity of hot gas is proportional to flame height.

Analysis on the Efficiency Change in Electric Vehicle Charging Stations Using Multi-Period Data Envelopment Analysis (다기간 자료포락분석을 이용한 전기차 충전소 효율성 변화 분석)

  • Son, Dong-Hoon;Gang, Yeong-Su;Kim, Hwa-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • It is highly challenging to measure the efficiency of electric vehicle charging stations (EVCSs) because factors affecting operational characteristics of EVCSs are time-varying in practice. For the efficiency measurement, environmental factors around the EVCSs can be considered because such factors affect charging behaviors of electric vehicle drivers, resulting in variations of accessibility and attractiveness for the EVCSs. Considering dynamics of the factors, this paper examines the technical efficiency of 622 electric vehicle charging stations in Seoul using data envelopment analysis (DEA). The DEA is formulated as a multi-period output-oriented constant return to scale model. Five inputs including floating population, number of nearby EVCSs, average distance of nearby EVCSs, traffic volume and traffic congestion are considered and the charging frequency of EVCSs is used as the output. The result of efficiency measurement shows that not many EVCSs has most of charging demand at certain periods of time, while the others are facing with anemic charging demand. Tobit regression analyses show that the traffic congestion negatively affects the efficiency of EVCSs, while the traffic volume and the number of nearby EVCSs are positive factors improving the efficiency around EVCSs. We draw some notable characteristics of efficient EVCSs by comparing means of the inputs related to the groups classified by K-means clustering algorithm. This analysis presents that efficient EVCSs can be generally characterized with the high number of nearby EVCSs and low level of the traffic congestion.

Study on Dust Explosion Characteristics of Acetylene Black (Acetylene Black의 분진폭발 특성 연구)

  • Jae Jun Choi;Dong Myeong Ha
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.38-43
    • /
    • 2024
  • Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.