• 제목/요약/키워드: time-varying channel

Search Result 280, Processing Time 0.037 seconds

NAC Measurement Technique on High Parallelism Probe Card with Protection Resistors

  • Kim, Gyu-Yeol;Nah, Wansoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.641-649
    • /
    • 2016
  • In this paper, a novel time-domain measurement technique on a high parallelism probe card with protection resistors installed is proposed. The measured signal amplitude decreases when the measurement is performed by Needle Auto Calibration (NAC) probing on a high parallelism probe card with installed resistors. Therefore, the original signals must be carefully reconstructed, and the compensation coefficient, which is related to the number of channel branches and the value of protection resistors, must be introduced. The accuracy of the reconstructed signals is analyzed based on the varying number of channel branches and various protection resistances. The results demonstrate that the proposed technique is appropriate for evaluating the overall signal performance of probe cards with Automatic Test Equipment (ATE), which enhances the efficiency of probe card performance test dramatically.

Performance analysis of an adaptive OFDM over an underwater acoustic channel (수중 음향 채널에서 적응형 OFDM의 성능 분석)

  • Im, Yo-Woong;Kang, Hee-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.509-515
    • /
    • 2010
  • Such as disaster rescue in deep water, undersea exploration and monitering for environmental pollution, many applications require the acoustic communication for high data rate over underwater acoustic channel. As underwater channel is very complex and is time-varying, conventional single carrier communication has good performance. In this paper, An adaptive OFDM system is analyzed for high data rate and reliability and rubust service over UWA channels. Through the adaptive system, we show threshold switching for an adaptive algorithm.

Dynamic power and bandwidth allocation for DVB-based LEO satellite systems

  • Satya Chan;Gyuseong Jo;Sooyoung Kim;Daesub Oh;Bon-Jun Ku
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.955-965
    • /
    • 2022
  • A low Earth orbit (LEO) satellite constellation could be used to provide network coverage for the entire globe. This study considers multi-beam frequency reuse in LEO satellite systems. In such a system, the channel is time-varying due to the fast movement of the satellite. This study proposes an efficient power and bandwidth allocation method that employs two linear machine learning algorithms and take channel conditions and traffic demand (TD) as input. With the aid of a simple linear system, the proposed scheme allows for the optimum allocation of resources under dynamic channel and TD conditions. Additionally, efficient projection schemes are added to the proposed method so that the provided capacity is best approximated to TD when TD exceeds the maximum allowable system capacity. The simulation results show that the proposed method outperforms existing methods.

The Effect of Time Belay on Adaptive QAM Modems (적응 QAM 모뎀의 시간지연에 대한 영향)

  • Y. H. Chung;Park, J. O.
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.69-72
    • /
    • 2000
  • Multilevel modulation schemes are known to be highly bandwidth efficient. By varying modulation level adaptively according to channel conditions (i.e. adaptive QAM schemes or AQAM), high bandwidth efficiency can be achieved. This paper considers the effect of time delay on the adaptive QAM schemes in dispersive fading channels. In order to undertake investigations effectively, a simulator has been developed. The simulation results show that the BER performance obtained for the wideband channel with a delay spread of 0.75 $\mu$sec is better than 10$^{-4}$ with a SNR value of 40 ㏈ and ABPS is found to be approximately 5.5.

  • PDF

Transmit Antenna Selection for Dual Polarized Channel Using Singular Value Decision

  • Lee Sang-yub;Mun Cheol;Yook Jong-gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.788-794
    • /
    • 2005
  • In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.

The Effects of Time Domain Windowing and Detection Ordering on Successive Interference Cancellation in OFDM Systems over Doubly Selective Channels (이중 선택적 채널 OFDM 시스템에서 시간 영역 윈도우와 검출 순서가 순차적 간섭 제거에 미치는 영향)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.635-641
    • /
    • 2010
  • Time-varying channel characteristics in OFDM systems over doubly selective channels cause inter-carrier interferences(ICI) in the frequency domain. Time domain windowing gives rise to restriction on the bandwidth of the frequency domain channel matrix and makes it possible to approximate the OFDM system as a simplified linear input-output model. When successive interference cancellation based on linear MMSE estimation is employed for channel equalization in OFDM systems, symbol detection ordering produces considerable effects on overall system performances. In this paper, we show the reduction of the residual ICI by time domain windowing and the resultant performance improvements, and investigate the effects of SINR- and CSEP-based symbol detection ordering on the performance of successive interference cancellation.

Performance analysis of Variable Rate Multi-carrier CDMA under an underwater acoustic channel (수중 음향 채널에서 가변 전송율 다중 반송파 CDMA의 성능 분석)

  • Kang, Hee-Hoon;Han, Wan-Ok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • As underwater channel is very complex and time-varying, don't supports good-quality for communication service. In this paper, a multi-carrier CDMA(MC-CDMA) system for the reliability and robust service in the underwater acoustic channel is proposed and analyzed for its performance. Applied variable rate algorithm to the proposed system gets a channel state information from relationship between SINR and user data-rate. Using channel state information make spectrum usage more efficient and overall system performance improved. In this paper, the performance of proposed system analyzed by simulation. And Pseudo-Random spread codes used in the system are discussed.

An Equalization Technique for OFDM Systems in Time-Variant Multipath Channels (시변 다중경로 페이딩 채널에서의 OFDM 등화기법)

  • Jeon, Won-Gi;Chang, Kyung-Hi;Cho, Yong-Soo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.9-18
    • /
    • 1998
  • In this paper, an equalization technique for OFDM(orthogonal frequency division multiplexing) in a time-variant multipath fading environment is described. A loss of subchannel orthogonality due to time-varying multipath fading channels leads to interchannel interference (ICI) which increases the error floor in proportion to Doppler frequency. A simple frequency-domain equalizer which can compensate the effect of ICI caused by time variation of multipath fading channel is proposed by modifying the previous frequency-domain equalization technique with taking into account only the ICI terms significantly affecting the error performance. The effectiveness of the proposed approach is demonstrated via computer simulation by applying it to OFDM systems when the multipath fading channel is slowly time variant.

  • PDF

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel (QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석)

  • Kim Sang-Hyo;Yang Jae-Dong;No Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.575-581
    • /
    • 2006
  • In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

A Novel Active User Identification Method for Space based Constellation Network

  • Kenan, Zhang;Xingqian, Li;Kai, Ding;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.212-216
    • /
    • 2022
  • Space based constellation network is a kind of ad hoc network in which users are self-organized without center node. In space based constellation network, users are allowed to enter or leave the network at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the network depends on how accurately this parameter is estimated. The so-called problem of active user identification, which consists of determining the number and identities of users transmitting in space based constellation network is discussed and a novel active user identification method is proposed in this paper. Active user identification code generated by transmitter address code and receiver address code is used to spread spectrum. Subspace-based method is used to process received signal and judgment model is established to identify active users according to the processing results. The proposed method is simulated under AWGN channel, Rician channel and Rayleigh channel respectively. Numerical results indicate that the proposed method obtains at least 1.16dB Eb/N0 gains compared with reference methods when miss alarm rate reaches 10-3.