• Title/Summary/Keyword: time-synchronization

Search Result 1,153, Processing Time 0.032 seconds

Time Synchronization Scheme of Cyber-Physical Systems for Military Training Systems (국방 훈련체계용 가상물리시스템 시간 동기화 기법)

  • Hong, Seok-Joon;Lee, Woo-Yeob;Joe, In-Whee;Kim, Won-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1814-1823
    • /
    • 2016
  • LVC(live-virtual-constructive) integrated training system is a representative cyber-physical system. Each systems in a LVC system has different time domain, resolution and operation methods. So, it is very important to integrate different middlewares as a common middleware for heterogeneous systems using inter-working GWs. Especially, since the LVC system uses different time, it is necessary to study the method for guaranteeing causality and time synchronization among the events from different systems. In this study, we propose an time synchronization scheme to integrate the virtual and constructive system which use the simulation time of HLA (High Level Architecture)/ RTI (Run Time Infrastructure) into the live system based on the OMG DDS (Data Distribution Service). We propose a precise time synchronization scheme based on HLA time management and clock federate between participants and federates which are the communication objects of DDS and HLA/RTI respectively. In addition, we verified that time is well-synchronized among heterogeneous systems using the suggested scheme by implementing and demonstrating simulation applications on each middleware.

Time-Efficient Voltage Scheduling Algorithms for Embedded Real-Time Systems with Task Synchronization (태스크 동기화가 필요한 임베디드 실기간 시스템에서 시간-효율적인 전압 스케쥴링 알고리즘)

  • Lee, Jae-Dong;Kim, Jung-Jong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2010
  • Many embedded real - lime systems have adopted processors supported with dynamic voltage scal-ing(DVS) recently. Power is one of the important metrics for Optimization in the design and operation of embedded real-time systems. We can save considerable energy by using slowdown of processor sup-ported with DVS. In this paper, we improved the previous algorithm at a point of view of time complexity to calculate task slowdown factors for an efficient energy consumption in embedded real-time systems with task synchronization. We grasped the properties of the previous algorithm having $O(n^{2})$ time complexity through mathematical analysis and s simulation. Using its properties we proposed the improved algorithms with O(nlogn) and O(n) time complexity which have the same performance as the previous algorithm has.

Cooperative Analog and Digital (CANDI) Time Synchronization for Large Multihop Network (다중 홉 네트워크를 위한 디지털 및 아날로그 협동 전송 시간 동기화 프로토콜)

  • Cho, Sung-Hwan;Ingram, Mary Ann
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1084-1093
    • /
    • 2012
  • For large multihop networks, large time synchronization (TS) errors can accumulate with conventional methods, such as TPSN, RBS, and FTSP, since they need a large number of hops to cover the network. In this paper, a method combining Concurrent Cooperative Transmission (CCT) and Semi- Cooperative Spectrum Fusion (SCSF) is proposed to reduce the number of hops to cover the large network. In CCT, cooperating nodes transmit the same digitally encoded message in orthogonal channels simultaneously, so receivers can benefit from array and diversity gains. SCSF is an analog cooperative transmission method where different cooperators transmit correlated information simultaneously. The two methods are combined to create a new distributed method of network TS, called the Cooperative Analog and Digital (CANDI) TS protocol, which promises significantly lower network TS errors in multi-hop networks. CANDI and TPSN are compared in simulation for a line network.

Design of Communication Protocols with Minimum Blocked Time for an Interactive Bicycle Simulator (자전거 시뮬레이터에서 블록 시간을 최소화하기 위한 통신 프로토콜의 설계)

  • Lee, Kyungno;Lee, Doo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1099-1105
    • /
    • 2000
  • The interactive bicycle simulator presented in this paper consists of a Stewart platform manipulator, magneto-rheological steering and braking devices, and a visual simulator. To provide a rider with reality, these devices should be controlled in real-time and motions of the devices and the visual should be also synchronized. If any of the devices and the visual gets unsynchronized due to significant blocking of control signals, the reality of the simulator is no longer secured. This paper presents communication protocols that minimize the blocked time of the control processes to guarantee the synchronization. The protocols are designed based on IPC (InterProcess Communications) of QNX, TCP/IP, and serial communication. The performance of the designed communication protocols is evaluated with the implemented bicycle simulator, and found satisfactory.

  • PDF

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

Robustness Analysis Under Second-Order Plant and Delay Uncertainties for Symmetrically Coupled Systems with Time Delay

  • Cheong Joon-O;Kwon Sang-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1195-1208
    • /
    • 2006
  • This paper aims at presenting robustness analysis under the uncertainties of the time delay and plant parameters in symmetrically coupled dynamic systems connected through network having time delay. The delay-involved closed loop characteristic function is mathematically formulated, incorporated with active synchronization control. And the robust stability of the corresponding system is analyzed by investigating the formation of characteristic equation containing second- order terms of uncertainty variables representing delay and plant dynamics mismatches. For the two individual types of uncertainties, we elucidate details of how to compute the bounds and what they imply physically. To support the validity of the mathematical claims, numerical examples and simulations are presented.

A Design of CDMA Demodulator Using Fuzzy Algorithm (퍼지 알고리즘을 이용한 CDMA 복조단 설계)

  • 정우열
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.121-129
    • /
    • 2000
  • The fuzzy-based SAM algorithm is proposed in this thesis to reduce the idle time. to recover call truncation fast when it is handed off and to last frequency acquisition in the mobile communications. It has additive and adaptive elements. Its weight values are generated not by feedback but by input conversion values. The initial expectation value is defined and forwardㆍbackward searching is executed 4o produce the expectation value of one chip. The fuzzy-based SAM algorithm is applied to the demodulator in CDMA system, and the synchronization time is measured. Synchronization time of PN code is 1.678$\mu\textrm{s}$ by SAM algorithm. It is 993 times faster than time of the conventional systems, 1.667$\mu\textrm{s}$.

  • PDF

New Decision Rules for UWB Synchronization (UWB 동기화를 위한 새로운 결정 법칙들)

  • Chong, Da-Hae;Lee, Young-Yoon;Ahn, Sang-Ho;Lee, Eui-Hyoung;Yoo, Seung-Hwan;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2C
    • /
    • pp.192-199
    • /
    • 2008
  • In ultra-wideband (UWB) systems, conventionally, the synchronization is to align time phases of a locally generated template and any of multipath components to within an allowable range. However, the synchronization with a low-power multipath component could incur significant performance degradation in receiver operation (e.g., detection) after the synchronization. On the other hand, the synchronization with a high-power multipath component can improve the performance in receiver operation after the synchronization. Generally, the first one among multipath components has the largest power. Thus, the synchronization with the first path component can make better performance than that with low-power component in receiver operation after the synchronization, Based on which, we first propose an optimal decision rule based on a maximum likelihood (ML) approach, and then, develope a simpler suboptimal decision rule for selecting the first path component. Simulation results show that the system has good demodulation performance, which uses new synchronization definition and the proposed decision rules have better performance than that of the conventional decision rule in UWB multipath channels. Between macroblocks in the previous and the current frame. On video samples with high motion and scene change cases, experimental results show that (1) the proposed algorithm adapts the encoded bitstream to limited channel capacity, while existing algorithms abruptly excess the limit bit rate; (2) the proposed algorithm improves picture quality with $0.4{\sim}0.9$dB in average.

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.