• Title/Summary/Keyword: time-switching

Search Result 1,904, Processing Time 0.029 seconds

Development of Navigation-based Cursor Using Object Identifier on TACHYON (객체식별자를 사용한 항해기반의 데이터베이스 커서 개발)

  • Bae, Myung-Nam;Park, Yoo-Mi;Han, Mi-Kyong;Choi, Wan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.157-159
    • /
    • 2001
  • 교환기 시스템(switching system)과 같은 통신 시스템 환경에서는 매우 제한적인 시간제약하에서 명시된 이벤트들이 반드시 완료되어야 한다. 따라서, 시스템내에 유지되는 응용데이터에 대해, 매우 빠르고 균일한 접근 시간을 제공하여야 한다. 또한, 최근들어 통신 운용 환경과 교환기 소프트웨어의 복잡성의 증가로 다중테이블 죠인과 객체지향 특성과 같은 고급 기능을 포함한 보다 향상된 데이터 모델링이 요구되고 있다. 이를 위해, 본 논문에서는 1) 통신 응용 환경을 보다 쉽게 모델링하도록 다양한 설계 모델링 개념을 제공하고, 2) 죠인과 같은 연산을 위해 추가의 메모리공간이나 시간을 사용하지 않고, 객체식별자의 항해를 통해 직접 결과를 추출하는 방법에 대해 설명한다.

  • PDF

Study on the Effective Operating Method on-off Valves of Pneumatic Servo System (개폐식 밸브를 사용한 공압 서보 시스템의 효율적 밸브 개폐에 관한 연구)

  • 황웅태;최서호;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.820-825
    • /
    • 1996
  • This paper is concerned with effective operating method of pneumatic on-off valves for improving position control accuracy, valve life-time and position settling time using modified pulse width modulation with dead-zone. The pneumatic system using on-off valves studied in this paper has advantage of simple construction and low cost compared with a system with servo-valves. The performance of proposed control system is investigated experimentally for the position control of a pneumatic cylinder using on-off valves. Experimental results show that the proposed algorithm for valve operation can be used to obtain fast and accurate position control and to prevent on-off valves from unnecessary switching.

  • PDF

Improving switching time from homeotropic state to planar state in cholesteric liquid crystal by olymer stabilization

  • Kim, Tae-Jin;Lim, Tong-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.437-438
    • /
    • 2005
  • A polymer stabilization method is employed to reduce the transition time from field-induced homeotropic(H) state to reflecting planar(P) state in the cholesteric liquid crystal(ChLC) display. To stabilize ChLC by polymer, we mixed ChLC with diacrylate of 2 $wt%{\sim}6$ wt%. Two samples were made with different method of stabilization. For one sample the diacrylate of 2 wt% was polymerized with the ChLC in P state, while for the other sample diacrylate of 16 wt% was polymerized with ChLC in H state. In the former case, the transition time was 1000 times faster then those in the pure sample. In the latter sample, the transition time was 1700 times faster than those in pure ChLC sample.

  • PDF

Continuation-Based Quasi-Steady-State Analysis Incorporating Multiplicative Load Restoration Model (증배형 부하회복 모델을 포함하는 연속법 기반 준정적 해석)

  • Song, Hwa-Chang;Ajjarapu, Venkatanamana
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • This paper presents a new continuation-based quasi-steady-state(CQSS) time-domain simulation algorithm incorporating a multiplicative aggregated load model for power systems. The authors' previous paper introduced a CQSS algorithm, which has the robust convergent characteristic near the singularity point due to the application of a continuation method. The previous CQSS algorithm implemented the load restoration in power systems using the exponent-based load recovery model that is derived from the additive dynamic load model. However, the reformulated exponent-based model causes the inappropriate variation of short-term load characteristics when switching actions occur, during time-domain simulation. This paper depicts how to incorporate a multiplicative load restoration model, which does not have the problem of deforming short-term load characteristics, into the time simulation algorithm, and shows an illustrative example with a 39-bus test system.

A Dead Time Compensation Algorithm of Independent Multi-Phase PMSM with Three-Dimensional Space Vector Control

  • Park, Ouk-Sang;Park, Je-Wook;Bae, Chae-Bong;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • This paper proposes a new dead time compensation method of independent six-phase permanent magnet synchronous motors (IS-PMSM). The current of the independent phase machines contains odd-numbered harmonics because of the dead time and the nonlinear characteristics of the switching devices. By using the d-q-n three-dimensional vector analysis, these harmonics can be extracted at the n-axis current. Thus, the current distortion can be compensated by controlling the n-axis current of the IS-PMSM to zero. The proposed method is simple and can be easily implemented without additional hardware setup. The validity of the proposed compensation method is verified with simulations and several experiments.

Time-Domain Analog Signal Processing Techniques

  • Kang, Jin-Gyu;Kim, Kyungmin;Yoo, Changsik
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.2
    • /
    • pp.64-73
    • /
    • 2020
  • As CMOS technology scales down, the design of analog signal processing circuit becomes far more difficult because of steadily decreasing supply voltage and smaller intrinsic gain of transistors. With sub-1V supply voltage, the conventional analog signal processing relying on high-gain amplifiers is not an effective solution and different approach has to be sought. One of the promising approaches is "time-domain analog signal processing" which exploits the improving switching speed of transistors in a scaled CMOS technology. In this paper, various time-domain analog signal processing techniques are explained with some experimental results.

Adaptive Synchronous Rectification Control Method for High Efficiency Resonant Converter

  • Kim, Joohoon;Moon, Sangcheol;Kim, Jintae
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.40-41
    • /
    • 2017
  • New adaptive SR (synchronous rectification) control method is proposed offering high efficiency in entire load conditions for resonant converters, in this paper. Unlike the conventional SR control method where turn-on time of the MOSFETs is varied depending on load conditions due to the stray inductance induced by a lead frame of MOSFET or PCB patterns, the proposed method automatically maintains a time interval between turn-off instance of a MOSFET and zero current instance of a body diode of the MOSFET as a predetermined time, in each switching cycle. Therefore, optimized turn-on time of the MOSFET can be achieved regardless of the leakage inductance. In this paper, the operational principle of proposed control method has been discussed. It has been tested on LLC resonant converter with 240 W to verify the proposed control method.

  • PDF

Adaptive Time-delayed Control with Integral Sliding-mode Surface for Fast Convergence Rate of Robot Manipulator (로봇 머니퓰레이터에서의 수렴속도 향상을 위한 적분 슬라이딩 모드 기반 적응 시간 제어 기법)

  • Baek, Jae-Min;Kang, Min-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.307-312
    • /
    • 2021
  • This paper proposes an adaptive time-delayed control approach with the integral sliding-mode surface for the fast convergence rate of robot manipulators. Adaptive switching gain aims to guarantee the system stability in such a way as to suppress time-delayed estimation error in the proposed control approach. Moreover, it makes an effort to increase the convergence ability in reaching the phase. An integral sliding-mode surface is employed to achieve a fast convergence rate in the sliding phase. The stability of the proposed one is proved to be asymptotically stable in the Lyapunov stability. The efficiency of the proposed control approach is illustrated with a tutorial example in robot manipulator, which is compared to that of the existing control approach.

Comparison of Capacitor Voltage Balancing Methods for 1GW MMC-HVDC Based on Real-Time Digital Simulator and Physical Control Systems

  • Lee, Jun-Min;Park, Jung-Woo;Kang, Dae-Wook;Lee, Jong-Pil;Yoo, Dong-Wook;Lee, Jang-Myung
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1171-1181
    • /
    • 2019
  • Modular Multilevel Converter (MMC)-based HVDC power transmission using a real-time simulator is one of the key technologies in power electronics research. This paper introduces the design methodology of a physical MMC-HVDC control system based on a Field-Programmable Gate Array (FPGA), which has the advantage of high-speed parallel operation, and validates the accuracy of MMC-HVDC control when operated with a Real-Time Digital Simulator (RTDS). Finally, this paper compares and analyzes the characteristics of capacitor voltage balancing methods such as Nearest Level Control (NLC), NLC with a reduced switching frequency, and tolerance band modulation implemented on physical control system.

Level Selection Algorithm with Fixed Sampling Frequency for Modular Multilevel Converter (고정 샘플링 주파수에서의 모듈형 멀티레벨 컨버터 레벨 선택 알고리즘)

  • Kim, Chan-Ki;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.415-423
    • /
    • 2018
  • This study uses a level selection algorithm with fixed sampling frequency for modular multilevel converter (MMC) systems. Theoretically, the proposed method increases the level infinitely while the sampling time remains the same. The proposed method called cluster stream buffer (CSB) consists of several clusters, wherein each cluster is composed of 32 submodules that depend on the level of the submodules in the MMC system. To increase the level of the MMC system, additional clusters are used, and the sampling time between clusters is determined from the sampling time between levels needed for utilizing the entire level from the MMC system. This method is crucial in the control of MMC-type HVDC systems because it improves scalability and precision.