Transactions of the Korean Society of Mechanical Engineers A
/
v.41
no.6
/
pp.517-524
/
2017
The objective of this research is to improve the efficiency of data collection from many machine components on smart factory floors using IoT(Internet of things) techniques and cloud platform, and to make it easy to update outdated diagnostic schemes through online deployment methods from cloud resources. The short-term analysis is implemented by a micro-controller, and it includes machine-learning algorithms for inferring snapshot information of the machine components. For long-term analysis, time-series and high-dimension data are used for root cause analysis by combining a cloud platform and multivariate analysis techniques. The diagnostic results are visualized in a web-based display dashboard for an unconstrained user access. The implementation is demonstrated to identify its performance in data acquisition and analysis for rotating machinery.
GEO-KOMPSAT-2A (GK2A) AMI (Advanced Meteorological Imager) Best Detector Select (BDS) map is pre-determined and uploaded before the satellite launch. After the launch, there is some possibility of a detector performance change driven by an abrupt temperature variation and thus the status of BDS map needs to be evaluated and updated if necessary. To investigate performance of entire elements of the detectors, AMI BDS analyses were conducted based on a technical note provided from the AMI vendor (L3HARRIS). The concept of the BDS analysis is to investigate the stability of signals from detectors while they are staring at targets (deep space and internal calibration target). For this purpose, Long Time Series (LTS) and Output Voltage vs. Bias Voltage (V-V) methods are used. The LTS for 30 secs and the V-V for two secs are spanned respectively for looking at the targets to compute noise components of detectors. To get the necessary data sets, these activities were conducted during the In-Orbit Test (IOT) period since a normal operation of AMI is stopped and special mission plans are commanded. With collected data sets during the GK2A IOT, AMI BDS map was intensively examined. It was found that about 1% of entire detector elements, which were evaluated at the ground test, showed characteristic changes and those degraded elements are replaced by alternative best ones. The stripping effects on AMI raw images due to the BDS problem were clearly removed when the new BDS map was applied.
Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
/
2004.05a
/
pp.96-100
/
2004
In the ship building industry various problems of erection is counterfeited due to formation of bottle necks in the block erection flow pattern This kind of problems cause accumulated problems in real-time erection right on the floor, When such a problem is approached, a support data of the entire erection sequence should be available, Here planning is done by reasoning about the future events in order to verify the existence of a reasonable series of actions to accomplish a goal. This technique helps in achieving benefits like handling search complications, in resolving goal conflicts and anticipation of bottleneck formation well in advance to take necessary countermeasures and boosts the decision support system, The data is being evaluated and an anticipatory function is to be developed This function is quite relevant in day to day planning operation. The system updates database with rearrangement of off-critical blocks in the erection sequence diagram, As a result of such a system, planners can foresee months ahead and can effectively make decisions regarding the control of loads on the man, machine and work flow pattern, culminating to an efficient load management. Such a foreseeing concept helps us in eliminating backtracking related adjustment which is less efficient compared to the look-ahead concept. An attempt is made to develop a computer program to update the database of block arrangement pattern based on heuristic formulation.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.709-713
/
2009
Recently, a lot of research that applies data acquired from devices such as cameras and RFIDs to context aware services is being performed in the field on Life-Log and the sensor network. A variety of analytical techniques has been proposed to recognize various information from the raw data because video and audio data include a larger volume of information than other sensor data. However, manually watching a huge amount of media data again has been necessary to create supervised data for the update of a class or the addition of a new class because these techniques generally use supervised learning. Therefore, the problem was that applications were able to use only recognition function based on fixed supervised data in most cases. Then, we proposed a method of acquiring supervised data from a video sharing site where users give comments on any video scene because those sites are remarkably popular and, therefore, many comments are generated. In the first step of this method, words with a high utility value are extracted by filtering the comment about the video. Second, the set of feature data in the time series is calculated by applying functions, which extract various feature data, to media data. Finally, our learning system calculates the correlation coefficient by using the above-mentioned two kinds of data, and the correlation coefficient is stored in the DB of the system. Various other applications contain a recognition function that is used to generate collective intelligence based on Web comments, by applying this correlation coefficient to new media data. In addition, flexible recognition that adjusts to a new object becomes possible by regularly acquiring and learning both media data and comments from a video sharing site while reducing work by manual operation. As a result, recognition of not only the name of the seen object but also indirect information, e.g. the impression or the action toward the object, was enabled.
Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
Nuclear Engineering and Technology
/
v.53
no.1
/
pp.148-163
/
2021
Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.
Park, Tae-Su;Chun, Seok-Ju;Lee, Ju-Hong;Kang, Yun-Hee;Choi, Bum-Ghi
Journal of The Korean Association of Information Education
/
v.9
no.3
/
pp.453-462
/
2005
Recently, due to technical improvements of storage devices and networks, the amount of data increase rapidly. In addition, it is required to find the knowledge embedded in a data stream as fast as possible. Huge data in a data stream are created continuously and changed fast. Various algorithms for finding frequent itemsets in a data stream are actively proposed. Current researches do not offer appropriate method to find frequent itemsets in which flow of time is reflected but provide only frequent items using total aggregation values. In this paper we proposes a novel algorithm for finding the relative frequent itemsets according to the time in a data stream. We also propose the method to save frequent items and sub-frequent items in order to take limited memory into account and the method to update time variant frequent items. The performance of the proposed method is analyzed through a series of experiments. The proposed method can search both frequent itemsets and relative frequent itemsets only using the action patterns of the students at each time slot. Thus, our method can enhance the effectiveness of learning and make the best plan for individual learning.
We propose a single Index approach for subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single index approach, we can reduce both storage space overhead and index maintenance overhead. Moving average transform is known to reduce the effect of noise and has been used in many areas such as econometrics since it is useful in finding overall trends. However, the previous research results have a problem of occurring index overhead both in storage space and in update maintenance since tile methods build several indexes to support arbitrary orders. In this paper, we first propose the concept of poly-order moving average transform, which uses a set of order values rather than one order value, by extending the original definition of moving average transform. That is, the poly-order transform makes a set of transformed windows from each original window since it transforms each window not for just one order value but for a set of order values. We then present theorems to formally prove the correctness of the poly-order transform based subsequence matching methods. Moreover, we propose two different subsequence matching methods supporting moving average transform of arbitrary order by applying the poly-order transform to the previous subsequence matching methods. Experimental results show that, for all the cases, the proposed methods improve performance significantly over the sequential scan. For real stock data, the proposed methods improve average performance by 22.4${\~}$33.8 times over the sequential scan. And, when comparing with the cases of building each index for all moving average orders, the proposed methods reduce the storage space required for indexes significantly by sacrificing only a little performance degradation(when we use 7 orders, the methods reduce the space by up to 1/7.0 while the performance degradation is only $9\%{\~}42\%$ on the average). In addition to the superiority in performance, index space, and index maintenance, the proposed methods have an advantage of being generalized to many sorts of other transforms including moving average transform. Therefore, we believe that our work can be widely and practically used in many sort of transform based subsequence matching methods.
Journal of Fisheries and Marine Sciences Education
/
v.28
no.2
/
pp.323-335
/
2016
The main reason of marine casualties is the human error in respect of ship's operation. The human error of officers in charge of a navigational watch is related to their abilities to handle of navigational equipment. Navigational devices play a key role to help officers decide what to do for safe navigation. Thus, the abilities to handle of navigational equipment mean not only operation of devices but also entire understanding of the system such as interpretation of information obtained from devices, appropriate use of information considering navigational circumstance. Qualification of seafarers is in accordance with STCW and detailed training courses for their qualification are provided by IMO model course series. Recently, ships engaged on international voyages shall be fitted with an ECDIS not later than the first survey on or after 1 July 2018. As increasing use of ECDIS on ships, marine casualties related to ECDIS are on the rise. The primary causes of the accidents are lacking understanding of ECDIS system, wrong presentation of information on display, wrong safety setting by seafarers who use ECDIS, using small-scale chart and missing charts update. As a result of these primary causes, some problems like wrong route planning and use of limited or omitted information occur. It could be happening by inappropriate seafarers' training which is not sufficient to support improving abilities of officers to handle navigational equipment. For efficient training, it is need to develop training courses. Applying full mission simulation system to seafarers' training courses with case studies and best practices which are well-constructed scenarios based on true marine casualties can increase the effect of training. To use the simulation system, it is possible that seafarers are trained under condition that closely resemble real situation. It should be considered that IMO model course be revised depending on the level of seafarers also. It could be helpful for increasing seafarers' abilities of equipment operation in place of accumulation of experience spending much time. In the short term, effort of training courses improvement for seafarers is needed and long term, it should be tried to provide stable system and services relate to ECDIS.
I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.
Park, Myung-Sook;Jung, Hahn Chul;Lee, Seonju;Ahn, Jae-Hyun;Bae, Sujung;Choi, Jong-Kuk
Korean Journal of Remote Sensing
/
v.37
no.5_2
/
pp.1281-1293
/
2021
The recent launch of the GOCI-II enables South Korea to have the world's first capability in deriving the ocean color data at geostationary satellite orbit for about 20 years. It is necessary to develop a consistent long-term ocean color time-series spanning GOCI to GOCI-II mission and improve the accuracy through validation using in situ data. To assess the GOCI-II's early mission performance, the objective of this study is to compare the GOCI-II Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and remote sensing reflectances (Rrs) through comparison with the GOCI data. Overall, the distribution of GOCI-II Chl-a corresponds with that of the GOCI over the Yellow Sea, Korea Strait, and the Ulleung Basin. In particular, a smaller RMSE value (0.07) between GOCI and GOCI-II over the summer Ulleung Basin confirms the GOCI-II data's reliability. However, despite the excellent correlation, the GOCI-II tends to overestimate Chl-a than the GOCI over the Yellow Sea and Korea Strait. The similar over-estimation bias of the GOCI-II is also notable in CDOM. Whereas no significant bias or error is found for Rrs at 490 nm and 550 nm (RMSE~0), the underestimation of Rrs at 443 nm contributes to the overestimation of GOCI-II Chl-a and CDOM over the Yellow Sea and the Korea Strait. Also, we show over-estimation of GOCI-II Rrs at 660 nm relative to GOCI to cause a possible bias in Total suspended sediment. In conclusion, this study confirms the initial reliability of the GOCI-II ocean color products, and upcoming update of GOCI-II radiometric calibration will lessen the inconsistency between GOCI and GOCI-II ocean color products.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.