• Title/Summary/Keyword: time-series update

Search Result 31, Processing Time 0.03 seconds

Real-time Monitoring System for Rotating Machinery with IoT-based Cloud Platform (회전기계류 상태 실시간 진단을 위한 IoT 기반 클라우드 플랫폼 개발)

  • Jeong, Haedong;Kim, Suhyun;Woo, Sunhee;Kim, Songhyun;Lee, Seungchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.517-524
    • /
    • 2017
  • The objective of this research is to improve the efficiency of data collection from many machine components on smart factory floors using IoT(Internet of things) techniques and cloud platform, and to make it easy to update outdated diagnostic schemes through online deployment methods from cloud resources. The short-term analysis is implemented by a micro-controller, and it includes machine-learning algorithms for inferring snapshot information of the machine components. For long-term analysis, time-series and high-dimension data are used for root cause analysis by combining a cloud platform and multivariate analysis techniques. The diagnostic results are visualized in a web-based display dashboard for an unconstrained user access. The implementation is demonstrated to identify its performance in data acquisition and analysis for rotating machinery.

GEO-KOMPSAT-2A AMI Best Detector Select Map Evaluation and Update (천리안위성2A호 기상탑재체 Best Detector Select 맵 평가 및 업데이트)

  • Jin, Kyoungwook;Lee, Sang-Cherl;Lee, Jung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.359-365
    • /
    • 2021
  • GEO-KOMPSAT-2A (GK2A) AMI (Advanced Meteorological Imager) Best Detector Select (BDS) map is pre-determined and uploaded before the satellite launch. After the launch, there is some possibility of a detector performance change driven by an abrupt temperature variation and thus the status of BDS map needs to be evaluated and updated if necessary. To investigate performance of entire elements of the detectors, AMI BDS analyses were conducted based on a technical note provided from the AMI vendor (L3HARRIS). The concept of the BDS analysis is to investigate the stability of signals from detectors while they are staring at targets (deep space and internal calibration target). For this purpose, Long Time Series (LTS) and Output Voltage vs. Bias Voltage (V-V) methods are used. The LTS for 30 secs and the V-V for two secs are spanned respectively for looking at the targets to compute noise components of detectors. To get the necessary data sets, these activities were conducted during the In-Orbit Test (IOT) period since a normal operation of AMI is stopped and special mission plans are commanded. With collected data sets during the GK2A IOT, AMI BDS map was intensively examined. It was found that about 1% of entire detector elements, which were evaluated at the ground test, showed characteristic changes and those degraded elements are replaced by alternative best ones. The stripping effects on AMI raw images due to the BDS problem were clearly removed when the new BDS map was applied.

A Study on method of load attribute for Spatial Scheduling (공간일정계획에서의 부하조정을 위한 방법론 연구)

  • Back Dong-Sik;Yoon Duck-Young;Kwak Hyun Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.96-100
    • /
    • 2004
  • In the ship building industry various problems of erection is counterfeited due to formation of bottle necks in the block erection flow pattern This kind of problems cause accumulated problems in real-time erection right on the floor, When such a problem is approached, a support data of the entire erection sequence should be available, Here planning is done by reasoning about the future events in order to verify the existence of a reasonable series of actions to accomplish a goal. This technique helps in achieving benefits like handling search complications, in resolving goal conflicts and anticipation of bottleneck formation well in advance to take necessary countermeasures and boosts the decision support system, The data is being evaluated and an anticipatory function is to be developed This function is quite relevant in day to day planning operation. The system updates database with rearrangement of off-critical blocks in the erection sequence diagram, As a result of such a system, planners can foresee months ahead and can effectively make decisions regarding the control of loads on the man, machine and work flow pattern, culminating to an efficient load management. Such a foreseeing concept helps us in eliminating backtracking related adjustment which is less efficient compared to the look-ahead concept. An attempt is made to develop a computer program to update the database of block arrangement pattern based on heuristic formulation.

  • PDF

Method of extracting context from media data by using video sharing site

  • Kondoh, Satoshi;Ogawa, Takeshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.709-713
    • /
    • 2009
  • Recently, a lot of research that applies data acquired from devices such as cameras and RFIDs to context aware services is being performed in the field on Life-Log and the sensor network. A variety of analytical techniques has been proposed to recognize various information from the raw data because video and audio data include a larger volume of information than other sensor data. However, manually watching a huge amount of media data again has been necessary to create supervised data for the update of a class or the addition of a new class because these techniques generally use supervised learning. Therefore, the problem was that applications were able to use only recognition function based on fixed supervised data in most cases. Then, we proposed a method of acquiring supervised data from a video sharing site where users give comments on any video scene because those sites are remarkably popular and, therefore, many comments are generated. In the first step of this method, words with a high utility value are extracted by filtering the comment about the video. Second, the set of feature data in the time series is calculated by applying functions, which extract various feature data, to media data. Finally, our learning system calculates the correlation coefficient by using the above-mentioned two kinds of data, and the correlation coefficient is stored in the DB of the system. Various other applications contain a recognition function that is used to generate collective intelligence based on Web comments, by applying this correlation coefficient to new media data. In addition, flexible recognition that adjusts to a new object becomes possible by regularly acquiring and learning both media data and comments from a video sharing site while reducing work by manual operation. As a result, recognition of not only the name of the seen object but also indirect information, e.g. the impression or the action toward the object, was enabled.

  • PDF

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Finding the time sensitive frequent itemsets based on data mining technique in data streams (데이터 스트림에서 데이터 마이닝 기법 기반의 시간을 고려한 상대적인 빈발항목 탐색)

  • Park, Tae-Su;Chun, Seok-Ju;Lee, Ju-Hong;Kang, Yun-Hee;Choi, Bum-Ghi
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.3
    • /
    • pp.453-462
    • /
    • 2005
  • Recently, due to technical improvements of storage devices and networks, the amount of data increase rapidly. In addition, it is required to find the knowledge embedded in a data stream as fast as possible. Huge data in a data stream are created continuously and changed fast. Various algorithms for finding frequent itemsets in a data stream are actively proposed. Current researches do not offer appropriate method to find frequent itemsets in which flow of time is reflected but provide only frequent items using total aggregation values. In this paper we proposes a novel algorithm for finding the relative frequent itemsets according to the time in a data stream. We also propose the method to save frequent items and sub-frequent items in order to take limited memory into account and the method to update time variant frequent items. The performance of the proposed method is analyzed through a series of experiments. The proposed method can search both frequent itemsets and relative frequent itemsets only using the action patterns of the students at each time slot. Thus, our method can enhance the effectiveness of learning and make the best plan for individual learning.

  • PDF

A Single Index Approach for Time-Series Subsequence Matching that Supports Moving Average Transform of Arbitrary Order (단일 색인을 사용한 임의 계수의 이동평균 변환 지원 시계열 서브시퀀스 매칭)

  • Moon Yang-Sae;Kim Jinho
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.42-55
    • /
    • 2006
  • We propose a single Index approach for subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single index approach, we can reduce both storage space overhead and index maintenance overhead. Moving average transform is known to reduce the effect of noise and has been used in many areas such as econometrics since it is useful in finding overall trends. However, the previous research results have a problem of occurring index overhead both in storage space and in update maintenance since tile methods build several indexes to support arbitrary orders. In this paper, we first propose the concept of poly-order moving average transform, which uses a set of order values rather than one order value, by extending the original definition of moving average transform. That is, the poly-order transform makes a set of transformed windows from each original window since it transforms each window not for just one order value but for a set of order values. We then present theorems to formally prove the correctness of the poly-order transform based subsequence matching methods. Moreover, we propose two different subsequence matching methods supporting moving average transform of arbitrary order by applying the poly-order transform to the previous subsequence matching methods. Experimental results show that, for all the cases, the proposed methods improve performance significantly over the sequential scan. For real stock data, the proposed methods improve average performance by 22.4${\~}$33.8 times over the sequential scan. And, when comparing with the cases of building each index for all moving average orders, the proposed methods reduce the storage space required for indexes significantly by sacrificing only a little performance degradation(when we use 7 orders, the methods reduce the space by up to 1/7.0 while the performance degradation is only $9\%{\~}42\%$ on the average). In addition to the superiority in performance, index space, and index maintenance, the proposed methods have an advantage of being generalized to many sorts of other transforms including moving average transform. Therefore, we believe that our work can be widely and practically used in many sort of transform based subsequence matching methods.

A Study on Advanced Seafarers' Training for Improving Abilities of Officers in Charge of a Navigational Watch who Handle Navigational Equipment: To Focus on the ECDIS (항해사의 항해기기 취급 능력 향상을 위한 해기 교육 개선에 대한 연구: ECDIS를 중심으로)

  • LEE, Bo-Kyeong;KIM, Dae-Hae;LEE, Sang-Do;CHO, Ik-Soon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.323-335
    • /
    • 2016
  • The main reason of marine casualties is the human error in respect of ship's operation. The human error of officers in charge of a navigational watch is related to their abilities to handle of navigational equipment. Navigational devices play a key role to help officers decide what to do for safe navigation. Thus, the abilities to handle of navigational equipment mean not only operation of devices but also entire understanding of the system such as interpretation of information obtained from devices, appropriate use of information considering navigational circumstance. Qualification of seafarers is in accordance with STCW and detailed training courses for their qualification are provided by IMO model course series. Recently, ships engaged on international voyages shall be fitted with an ECDIS not later than the first survey on or after 1 July 2018. As increasing use of ECDIS on ships, marine casualties related to ECDIS are on the rise. The primary causes of the accidents are lacking understanding of ECDIS system, wrong presentation of information on display, wrong safety setting by seafarers who use ECDIS, using small-scale chart and missing charts update. As a result of these primary causes, some problems like wrong route planning and use of limited or omitted information occur. It could be happening by inappropriate seafarers' training which is not sufficient to support improving abilities of officers to handle navigational equipment. For efficient training, it is need to develop training courses. Applying full mission simulation system to seafarers' training courses with case studies and best practices which are well-constructed scenarios based on true marine casualties can increase the effect of training. To use the simulation system, it is possible that seafarers are trained under condition that closely resemble real situation. It should be considered that IMO model course be revised depending on the level of seafarers also. It could be helpful for increasing seafarers' abilities of equipment operation in place of accumulation of experience spending much time. In the short term, effort of training courses improvement for seafarers is needed and long term, it should be tried to provide stable system and services relate to ECDIS.

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

The GOCI-II Early Mission Ocean Color Products in Comparison with the GOCI Toward the Continuity of Chollian Multi-satellite Ocean Color Data (천리안해양위성 연속자료 구축을 위한 GOCI-II 임무 초기 주요 해색산출물의 GOCI 자료와 비교 분석)

  • Park, Myung-Sook;Jung, Hahn Chul;Lee, Seonju;Ahn, Jae-Hyun;Bae, Sujung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1281-1293
    • /
    • 2021
  • The recent launch of the GOCI-II enables South Korea to have the world's first capability in deriving the ocean color data at geostationary satellite orbit for about 20 years. It is necessary to develop a consistent long-term ocean color time-series spanning GOCI to GOCI-II mission and improve the accuracy through validation using in situ data. To assess the GOCI-II's early mission performance, the objective of this study is to compare the GOCI-II Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and remote sensing reflectances (Rrs) through comparison with the GOCI data. Overall, the distribution of GOCI-II Chl-a corresponds with that of the GOCI over the Yellow Sea, Korea Strait, and the Ulleung Basin. In particular, a smaller RMSE value (0.07) between GOCI and GOCI-II over the summer Ulleung Basin confirms the GOCI-II data's reliability. However, despite the excellent correlation, the GOCI-II tends to overestimate Chl-a than the GOCI over the Yellow Sea and Korea Strait. The similar over-estimation bias of the GOCI-II is also notable in CDOM. Whereas no significant bias or error is found for Rrs at 490 nm and 550 nm (RMSE~0), the underestimation of Rrs at 443 nm contributes to the overestimation of GOCI-II Chl-a and CDOM over the Yellow Sea and the Korea Strait. Also, we show over-estimation of GOCI-II Rrs at 660 nm relative to GOCI to cause a possible bias in Total suspended sediment. In conclusion, this study confirms the initial reliability of the GOCI-II ocean color products, and upcoming update of GOCI-II radiometric calibration will lessen the inconsistency between GOCI and GOCI-II ocean color products.