• 제목/요약/키워드: time-series prediction

검색결과 896건 처리시간 0.03초

Bootstrap Confidence Intervals for the INAR(p) Process

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • 제13권2호
    • /
    • pp.343-358
    • /
    • 2006
  • The distributional properties of forecasts in an integer-valued time series model have not been discovered yet mainly because of the complexity arising from the binomial thinning operator. We propose two bootstrap methods to obtain nonparametric prediction intervals for an integer-valued autoregressive model : one accommodates the variation of estimating parameters and the other does not. Contrary to the results of the continuous ARMA model, we show that the latter is better than the former in forecasting the future values of the integer-valued autoregressive model.

Deep Recurrent Neural Network for Multiple Time Slot Frequency Spectrum Predictions of Cognitive Radio

  • Tang, Zhi-ling;Li, Si-min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3029-3045
    • /
    • 2017
  • The main processes of a cognitive radio system include spectrum sensing, spectrum decision, spectrum sharing, and spectrum conversion. Experimental results show that these stages introduce a time delay that affects the spectrum sensing accuracy, reducing its efficiency. To reduce the time delay, the frequency spectrum prediction was proposed to alleviate the burden on the spectrum sensing. In this paper, the deep recurrent neural network (DRNN) was proposed to predict the spectrum of multiple time slots, since the existing methods only predict the spectrum of one time slot. The continuous state of a channel is divided into a many time slots, forming a time series of the channel state. Since there are more hidden layers in the DRNN than in the RNN, the DRNN has fading memory in its bottom layer as well as in the past input. In addition, the extended Kalman filter was used to train the DRNN, which overcomes the problem of slow convergence and the vanishing gradient of the gradient descent method. The spectrum prediction based on the DRNN was verified with a WiFi signal, and the error of the prediction was analyzed. The simulation results proved that the multiple slot spectrum prediction improved the spectrum efficiency and reduced the energy consumption of spectrum sensing.

Time-Series Data Prediction using Hidden Markov Model and Similarity Search for CRM (CRM을 위한 은닉 마코프 모델과 유사도 검색을 사용한 시계열 데이터 예측)

  • Cho, Young-Hee;Jeon, Jin-Ho;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • 제14권5호
    • /
    • pp.19-28
    • /
    • 2009
  • Prediction problem of the time-series data has been a research issue for a long time among many researchers and a number of methods have been proposed in the literatures. In this paper, a method is proposed that similarities among time-series data are examined by use of Hidden Markov Model and Likelihood and future direction of the data movement is determined. Query sequence is modeled by Hidden Markov Modeling and then the model is examined over the pre-recorded time-series to find the subsequence which has the greatest similarity between the model and the extracted subsequence. The similarity is evaluated by likelihood. When the best subsequence is chosen, the next portion of the subsequence is used to predict the next phase of the data movement. A number of experiments with different parameters have been conducted to confirm the validity of the method. We used KOSPI to verify suggested method.

An Application of GP-based Prediction Model to Sunspots

  • Yano, Hiroshi;Yoshihara, Ikuo;Numata, Makoto;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.523-523
    • /
    • 2000
  • We have developed a method to build time series prediction models by Genetic Programming (GP). Our proposed CP includes two new techniques. One is the parameter optimization algorithm, and the other is the new mutation operator. In this paper, the sunspot prediction experiment by our proposed CP was performed. The sunspot prediction is good benchmark, because many researchers have predicted them with various kinds of models. We make three experiments. The first is to compare our proposed method with the conventional methods. The second is to investigate about the relation between a model-building period and prediction precision. In the first and the second experiments, the long-term data of annual sunspots are used. The third is to try the prediction using monthly sunspots. The annual sunspots are a mean of the monthly sunspots. The behaviors of the monthly sunspot cycles in tile annual sunspot data become invisible. In the long-term data of the monthly sunspots, the behavior appears and is complicated. We estimate that the monthly sunspot prediction is more difficult than the annual sunspot prediction. The usefulness of our method in time series prediction is verified by these experiments.

  • PDF

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.

Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM (LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석)

  • Ju-Hyung Lee;Jun-Ki Hong
    • The Journal of Bigdata
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 2022
  • Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Therefore, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'A'. According to the simulation results, it was confirmed that Bidirectional-LSTM(Bi-LSTM) compared to LSTM(Long Short-Term Memory) takes more simulation time about more than 50%, but the prediction accuracy of non-periodic time series data such as clothing product sales data is the same.

A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation (지하수위 시계열 예측 모델 기반 하천수위 영향 필터링 기법 개발 및 지하수 함양률 산정 연구)

  • Yoon, Heesung;Park, Eungyu;Kim, Gyoo-Bum;Ha, Kyoochul;Yoon, Pilsun;Lee, Seung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • 제20권3호
    • /
    • pp.74-82
    • /
    • 2015
  • A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river. Direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Using the time series models the effect of river stage on groundwater level data was filtered out by setting a constant value for river stage inputs. The filtered data were applied to the hybrid water table fluctuation method in order to estimate the groundwater recharge. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

A Study on Time Series Cross-Validation Techniques for Enhancing the Accuracy of Reservoir Water Level Prediction Using Automated Machine Learning TPOT (자동기계학습 TPOT 기반 저수위 예측 정확도 향상을 위한 시계열 교차검증 기법 연구)

  • Bae, Joo-Hyun;Park, Woon-Ji;Lee, Seoro;Park, Tae-Seon;Park, Sang-Bin;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제66권1호
    • /
    • pp.1-13
    • /
    • 2024
  • This study assessed the efficacy of improving the accuracy of reservoir water level prediction models by employing automated machine learning models and efficient cross-validation methods for time-series data. Considering the inherent complexity and non-linearity of time-series data related to reservoir water levels, we proposed an optimized approach for model selection and training. The performance of twelve models was evaluated for the Obong Reservoir in Gangneung, Gangwon Province, using the TPOT (Tree-based Pipeline Optimization Tool) and four cross-validation methods, which led to the determination of the optimal pipeline model. The pipeline model consisting of Extra Tree, Stacking Ridge Regression, and Simple Ridge Regression showed outstanding predictive performance for both training and test data, with an R2 (Coefficient of determination) and NSE (Nash-Sutcliffe Efficiency) exceeding 0.93. On the other hand, for predictions of water levels 12 hours later, the pipeline model selected through time-series split cross-validation accurately captured the change pattern of time-series water level data during the test period, with an NSE exceeding 0.99. The methodology proposed in this study is expected to greatly contribute to the efficient generation of reservoir water level predictions in regions with high rainfall variability.

Prediction Model of Real Estate Transaction Price with the LSTM Model based on AI and Bigdata

  • Lee, Jeong-hyun;Kim, Hoo-bin;Shim, Gyo-eon
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.274-283
    • /
    • 2022
  • Korea is facing a number difficulties arising from rising housing prices. As 'housing' takes the lion's share in personal assets, many difficulties are expected to arise from fluctuating housing prices. The purpose of this study is creating housing price prediction model to prevent such risks and induce reasonable real estate purchases. This study made many attempts for understanding real estate instability and creating appropriate housing price prediction model. This study predicted and validated housing prices by using the LSTM technique - a type of Artificial Intelligence deep learning technology. LSTM is a network in which cell state and hidden state are recursively calculated in a structure which added cell state, which is conveyor belt role, to the existing RNN's hidden state. The real sale prices of apartments in autonomous districts ranging from January 2006 to December 2019 were collected through the Ministry of Land, Infrastructure, and Transport's real sale price open system and basic apartment and commercial district information were collected through the Public Data Portal and the Seoul Metropolitan City Data. The collected real sale price data were scaled based on monthly average sale price and a total of 168 data were organized by preprocessing respective data based on address. In order to predict prices, the LSTM implementation process was conducted by setting training period as 29 months (April 2015 to August 2017), validation period as 13 months (September 2017 to September 2018), and test period as 13 months (December 2018 to December 2019) according to time series data set. As a result of this study for predicting 'prices', there have been the following results. Firstly, this study obtained 76 percent of prediction similarity. We tried to design a prediction model of real estate transaction price with the LSTM Model based on AI and Bigdata. The final prediction model was created by collecting time series data, which identified the fact that 76 percent model can be made. This validated that predicting rate of return through the LSTM method can gain reliability.

Time Series Models for Performance Evaluation of Network Traffic Forecasting (시계열 모형을 이용한 통신망 트래픽 예측 기법연구)

  • Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • 제20권2호
    • /
    • pp.219-227
    • /
    • 2007
  • The time series models have been used to analyze and predict the network traffic. In this paper, we compare the performance of the time series models for prediction of network traffic. The feasibility study showed that a class of nonlinear time series models can be outperformed than the linear time series models to predict the network traffic.