• Title/Summary/Keyword: time-series matching

Search Result 112, Processing Time 0.017 seconds

AUTOMATED STREAK DETECTION FOR HIGH VELOCITY OBJECTS: TEST WITH YSTAR-NEOPAT IMAGES (고속이동천체 검출을 위한 궤적탐지 알고리즘 및 YSTAR-NEOPAT 영상 분석 결과)

  • Kim, Dae-Won;Byun, Yong-Ik;Kim, Su-Yong;Kang, Yong-Woo;Han, Won-Yong;Moon, Hong-Kyu;Yim, Hong-Suh
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.385-392
    • /
    • 2005
  • We developed an algorithm to efficiently detect streaks in survey images and made a performance test with YSTAR-NEOPAT images obtained by the 0.5m telescope stationed in South Africa. Fast moving objects whose apparent speeds exceed 10 arcsec/min are the main target of our algorithm; these include artificial satellites, space debris, and very fast Near-Earth Objects. Our algorithm, based on the outline shape of elongated sources employs a step of image subtraction in order to reduce the confusion caused by dense distribution of faint stars. It takes less than a second to find and characterize streaks present in normal astronomical images of 2K format. Comparison with visual inspection proves the efficiency and completeness of our automated detection algorithm. When applied to about 7,000 time-series images from YSTAR telescope, nearly 700 incidents of streaks are detected. Fast moving objects are identified by the presence of matching streaks in adjoining frames. Nearly all of confirmed fast moving objects turn out to be artificial satellites or space debris. Majority of streaks are however meteors and cosmic ray hits, whose identity is often difficult to classify.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.