• Title/Summary/Keyword: time-of-flight

Search Result 1,769, Processing Time 0.028 seconds

Analytical Study for the Safety of the Bird Strike to the Small Aircraft Having a Composite Wing (복합재 주익을 갖는 소형항공기 조류충돌 시 안전성에 관한 해석적 연구)

  • Park, Ill-Kyung;Kim, Seung-Jun;Choe, Ik-Hyun;An, Seok-Min;Yeo, Chan-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The bird strike to small aircraft has not been an issue because of its low speed and usage as a private aircraft. So, the compliance of the bird strike regulation is limited to large fixed-wing aircraft such as the commuter category in FAR Part 23 and the civil aircraft in FAR Part 25, generally. However, the forecast of dramatic increasing of VLJ(Very Light Jet), the usage of a composite material for an aircraft structure and flight time of general aviation due to Air-taxi for the point to point transportation, would rise up the need of bird strike regulations and a safety enhancement in normal and utility categorized aircraft. In this study, the safety of bird strike to small aircraft wing leading edge made of a metal and a composite material were compared using the explicit finite element analysis.

Proteomic Analysis of Cytokinin Induced Proteins in Arabidopsis (단백체를 이용한 애기장대 Cytokinin 유도 단백질의 분석)

  • Liang Ying-Shi;Cha Joon-Yung;Ermawati Netty;Jung Min-Hee;Bae Dong-Won;Lee Chang-Won;Son Dae-Young
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.251-256
    • /
    • 2005
  • Cytokinins are essential plant hormones that play crucial roles in various aspects of plant growth and development. To better understand the molecular mechanisms of cytokinin action, we identified cytokinin related proteins by a proteomic approach. Proteins extracted from control and trans-zeatin treated Arabidopsis seedlings were separated and analyzed by two dimensional gel analysis. Differentially expressed protein spots were identified with peptide mass fingerprinting based on matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and database searching, We obtained ten up-regulated and one down-regulated proteins upon t-zeatin treatment. The expression of the following proteins was induced; pollen allergen like protein, L-ascorbate peroxidase, tetrapyrrole methylase family protein, SGT1 protein homolog, disease resistance related protein, maternal embryogenesis control protein, paxneb related protein, gluthathione S-transferase and IAA amino acid hydrolase homolog.

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.

Peptide Profiling and Selection of Specific-Expressed Peptides in Hypoglycemic Sorghum Seed using SELDI-TOF MS (SELDI-TOF MS를 활용한 혈당강하 수수 종자의 펩타이드 프로파일링 및 특이 발현 펩타이드 선발)

  • Park, Sei Joon;Hwang, Su Min;Park, Jun Young;Ko, Jee-Yeon;Kim, Tae Wan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.252-262
    • /
    • 2014
  • Sorghum seed is traditionally used as secondary food sources in addition to rice in Korea. While the hypoglycemia regulating phytochemicals have been found in sorghum seed, peptides related with hypoglycemia never been studied before. To obtain the peptide characteristics and the specifically high-expressed peptides in hypoglycemic sorghum seed, peptide profiles of seven hypoglycemic and five non-hypoglycemic sorghum lines bred in RDA were determined using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The twelve sorghum lines exhibited 104 peptides on CM10 protein chip array (weak cation exchange) and 95 peptides on Q10 (weak cation exchange) in the molecular mass range from 2,000 to 20,000 Da. Heat map via supervised hierarchical clustering of the significantly different peptides (p < 0.01) in peak intensity among the 12 lines effectively revealed the specifically upregulated peptides in each line and distinguished between 7 hypoglycemic and 5 non-hypoglycemic lines. Through the comparison with hypoglycemic and non-hypoglycemic lines, 10 peptides including 2231.6, 2845.4, 2907.9, 3063.5, 3132.6, 3520.8, 4078.8, 5066.2, 5296.5, 5375.5 Da were specifically high-expressed in hypoglycemic lines at p < 0.00001. This study characterized seed peptides of 12 sorghums and found ten peptides highly expressed for hypoglycemic sorghum lines, which could be used as peptide biomarkers for identification of hypoglycemic sorghum.

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Characterization of Water Absorption by CFRP Using Air-Coupled Ultrasonic Testing (공기결합 초음파탐상에 의한 CFRP 복합재의 흡습 특성 평가)

  • Lee, Joo-Min;Lee, Joo-Sung;Kim, Yong-Kwon;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.155-164
    • /
    • 2014
  • Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at $75^{\circ}C$ for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

Design of Simple Shielding Handkerchief to Protect the Passenger's Thyroid (비행기 이용승객의 갑상선 차폐를 위한 간편한 손수건 고안)

  • Jung, Hongmoon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.87-93
    • /
    • 2019
  • Recently, the number of passengers using airplanes is rapidly increasing due to the increase of overseas travelers. Therefore, the probability of exposure to natural radiation due to altitude is increasing due to the increase in flight time. Cosmic-ray penetrates the Earth's magnetic field belt Van Allen, which is located at an altitude of 400 km to 1200 km. Most cosmic rays are blocked at Van Allen belt. However, cosmic-ray could be not completely blocked, and a small amount of cosmic-ray affects the earth. In general, if the altitude was increased by 100m, the natural exposure dose increased by 0.03 mSv on the Earth. In this study, I tried to minimize the exposure to natural radiation in airplanes when boarding airplanes. Especially, I was aimed to minimize radiation exposure by protecting the highly sensitive thyroid gland among human organs. According to the results of the study, the designed shielding handkerchief was able to shield cosmic natural radiation dose by more than 70%. In conclusion, the application of the shielding handkerchief made in this study can be effectively shield natural radiation.

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials (석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성)

  • Kim, Daesup;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.496-501
    • /
    • 2022
  • In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Operational Validation of the COMS Satellite Ground Control System during the First Three Months of In-Orbit Test Operations (발사 후 3개월간의 궤도 내 시험을 통한 통신해양기상위성 관제시스템의 운용검증)

  • Lee, Byoung-Sun;Kim, In-Jun;Lee, Soo-Jeon;Hwang, Yoo-La;Jung, Won-Chan;Kim, Jae-Hoon;Kim, Hae-Yeon;Lee, Hoon-Hee;Lee, Sang-Cherl;Cho, Young-Min;Kim, Bang-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • COMS(Chollian) satellite which was launched on June 26, 2010 has three payloads for Ka-band communications, geostationary ocean color imaging and meteorological imaging. In order to make efficient use of the geostationary satellite, a concept of mission operations has been considered from the beginning of the satellite ground control system development. COMS satellite mission operations are classified by daily, weekly, monthly, and seasonal operations. Daily satellite operations include mission planning, command planning and transmission, telemetry processing and analysis, ranging and orbit determination, ephemeris and event prediction, and wheel off-loading set point parameter calculation. As a weekly operation, North-South station keeping maneuver and East-West station keeping maneuver should be performed on Tuesday and Thursday, respectively. Spacecraft oscillator updating parameter should be calculated and uploaded once a month. Eclipse operations should be performed during a vernal equinox and autumnal equinox season. In this paper, operational validations of the major functions in COMS SGCS are presented for the first three month of in-orbit test operations. All of the major functions have been successfully verified and the COMS SGCS will be used for the mission operations of the COMS satellite for 7 years of mission life time and even more.