• Title/Summary/Keyword: time-frequency spectrogram

Search Result 44, Processing Time 0.029 seconds

Aurally Relevant Analysis by Synthesis - VIPER a New Approach to Sound Design -

  • Daniel, Peter;Pischedda, Patrice
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1009-1009
    • /
    • 2003
  • VIPER a new tool for the VIsual PERception of sound quality and for sound design will be presented. Requirement for the visualization of sound quality is a signal analysis modeling the information processing of the ear. The first step of the signal processing implemented in VIPER, calculates an auditory spectrogram by a filter bank adapted to the time- and frequency resolution of the human ear. The second step removes redundant information by extracting time- and frequency contours from the auditory spectrogram in analogy to contours of the visual system. In a third step contours and/or auditory spectrogram can be resynthesised confirming that only aurally relevant information were extracted. The visualization of the contours in VIPER allows intuitively to grasp the important components of a signal. Contributions of parts of a signal to the overall quality can be easily auralized by editing and resynthesising the contours or the underlying auditory spectrogram. Resynthesis of time contours alone allows e.g. to auralize impulsive components separately from the tonal components. Further processing of the contours determines tonal parts in form of tracks. Audible differences between two versions of a sound can be visually inspected in VIPER through the help of auditory distance spectrograms. Applications are shown for the sound design of several interior noises of cars.

  • PDF

Experimental Study on Estimation of Flight Trajectory Using Ground Reflection and Comparison of Spectrogram and Cepstrogram Methods (지면 반사효과를 이용한 비행 궤적 추정에 대한 실험적 연구와 스펙트로그램 및 캡스트로그램 방법 비교)

  • Jung, Ookjin;Go, Yeong-Ju;Lee, Jaehyung;Choi, Jong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • A methodology is proposed to estimate a trajectory of a flying target and its velocity using the time and frequency analysis of the acoustic signal. The measurement of sound emitted from a flying acoustic source with a microphone above a ground shall receive both direct and ground-reflected sound waves. For certain frequency contents, the destructive interference happens in received signal waveform reflected path lengths are in multiple integers of direct path length. This phenomenon is referred to as the acoustical mirror effect and it can be observed in a spectrogram plot. The spectrogram of acoustic measurement for a flying vehicle measurement shows several orders of destructive interference curves. The first or second order of curve is used to find the best approximate path by using nonlinear least-square method. Simulated acoustic signal is generated for the condition of known geometric of a sensor and a source in flight. The estimation based on cepstrogram analysis provides more accurate estimate than spectrogram.

A Method of Sound Segmentation in Time-Frequency Domain Using Peaks and Valleys in Spectrogram for Speech Separation (음성 분리를 위한 스펙트로그램의 마루와 골을 이용한 시간-주파수 공간에서 소리 분할 기법)

  • Lim, Sung-Kil;Lee, Hyon-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.418-426
    • /
    • 2008
  • In this paper, we propose an algorithm for the frequency channel segmentation using peaks and valleys in spectrogram. The frequency channel segments means that local groups of channels in frequency domain that could be arisen from the same sound source. The proposed algorithm is based on the smoothed spectrum of the input sound. Peaks and valleys in the smoothed spectrum are used to determine centers and boundaries of segments, respectively. To evaluate a suitableness of the proposed segmentation algorithm before that the grouping stage is applied, we compare the synthesized results using ideal mask with that of proposed algorithm. Simulations are performed with mixed speech signals with narrow band noises, wide band noises and other speech signals.

Speech Recognition Model Based on CNN using Spectrogram (스펙트로그램을 이용한 CNN 음성인식 모델)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.685-692
    • /
    • 2024
  • In this paper, we propose a new CNN model to improve the recognition performance of command voice signals. This method obtains a spectrogram image after performing a short-time Fourier transform (STFT) of the input signal and improves command recognition performance through supervised learning using a CNN model. After Fourier transforming the input signal for each short-time section, a spectrogram image is obtained and multi-classification learning is performed using a CNN deep learning model. This effectively classifies commands by converting the time domain voice signal to the frequency domain to express the characteristics well and performing deep learning training using the spectrogram image for the conversion parameters. To verify the performance of the speech recognition system proposed in this study, a simulation program using Tensorflow and Keras libraries was created and a simulation experiment was performed. As a result of the experiment, it was confirmed that an accuracy of 92.5% could be obtained using the proposed deep learning algorithm.

Open and Short Circuit Switches Fault Detection of Voltage Source Inverter Using Spectrogram

  • Ahmad, N.S.;Abdullah, A.R.;Bahari, N.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.190-199
    • /
    • 2014
  • In the last years, fault problem in power electronics has been more and more investigated both from theoretical and practical point of view. The fault problem can cause equipment failure, data and economical losses. And the analyze system require to ensure fault problem and also rectify failures. The current errors on these faults are applied for identified type of faults. This paper presents technique to detection and identification faults in three-phase voltage source inverter (VSI) by using time-frequency distribution (TFD). TFD capable represent time frequency representation (TFR) in temporal and spectral information. Based on TFR, signal parameters are calculated such as instantaneous average current, instantaneous root mean square current, instantaneous fundamental root mean square current and, instantaneous total current waveform distortion. From on results, the detection of VSI faults could be determined based on characteristic of parameter estimation. And also concluded that the fault detection is capable of identifying the type of inverter fault and can reduce cost maintenance.

Time-Frequency Analysis of Broadband Acoustic Scattering from Chub Mackerel Scomber japonicus, Goldeye Rockfish Sebastes thompsoni, and Fat Greenling Hexagrammos otakii (고등어(Scomber japonicus), 불볼락(Sebastes thompsoni) 및 쥐노래미(Hexagrammos otakii)에 의한 광대역 음향산란신호의 시간-주파수 분석)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.221-232
    • /
    • 2015
  • Broadband echoes measured in live chub mackerel Scomber japonicus, goldeye rockfish Sebastes thompsoni, and fat greenling Hexagrammos otakii with different morphologies and internal characteristics were analyzed in time and frequency domains to understand the species-specific echo feature characteristics for classifying fish species. The mean echo image for each time-frequency representation dataset obtained as a function of orientation angle was extracted to mitigate the effect of fish orientation on acoustic scattering. The joint time-frequency content of the broadband echo signals was obtained using the smoothed pseudo-Wigner-Ville distribution (SPWVD). The SPWVDs were analyzed for each echo signature of the three fish species. The results show that the time-frequency analysis provided species-specific echo structure patterns and metrics of the broadband acoustic signals to facilitate fish species classification.

A Study on the Pulse Doppler System with M-mode Image and Spectrum Analyzer (주파수 해석기와 M-mode 영상을 갖는 펄스 도플러 장치의 개발에 관한 연구)

  • Jeong, Taek-Seob;Park, Sei-Hyun;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1217-1220
    • /
    • 1987
  • We have developed a Ultra Sound Pulsed Doppler System with two-dimensional M-mode image and Spectrum analyzer. The image of the M-mode is composed of time and depth axes. The Spectrum analyzer shows the spectrum of Doppler signal which represents the velocity component of time dependent blood-flow behavior. The spectrogram using Spectrum analyzer is composed of frequency and amplitude axes. The outputs of the system are audio signals, velocity curves, velocity profiles, M-mode images and spectrogram.

  • PDF

Energy Distribution Characteristics of Nonstationary Acoustic Emission Burst Signal Using Time-frequency Analysis (비정상 AE 진동감시 신호의 에너지 분포특성과 시간-주파수 해석)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Conventional Fourier analysis can give only limited information about the dynamic characteristics of nonstationary signals. Instead, time-frequency analysis is widely used to investigate the nonstationary signal in detail. Several time-frequency analysis methods are compared for a typical acoustic emission burst generated during the impact between a ferrite ceramic and aluminum plate. This AE burst is inherently nonstationary and random containing many frequency contents, which leads to severe interference between cross terms in bilinear convolution type distributions. The smoothing and reassignment processes can improve the readability and resolution of the results. Spectrogram and scalogram of the AE burst are obtained and compared to get the characteristics information. Renyi entropies are computed for various bilinear time-frequency transforms to evaluate the randomness. These bilinear transforms are reassigned by using the improved algorithm in discrete computation.

A Comparison Study on the Speech Signal Parameters for Chinese Leaners' Korean Pronunciation Errors - Focused on Korean /ㄹ/ Sound (중국인 학습자의 한국어 발음 오류에 대한 음성 신호 파라미터들의 비교 연구 - 한국어의 /ㄹ/ 발음을 중심으로)

  • Lee, Kang-Hee;You, Kwang-Bock;Lim, Ha-Young
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.239-246
    • /
    • 2017
  • This paper compares the speech signal parameters between Korean and Chinese for Korean pronunciation /ㄹ/, which is caused many errors by Chinese leaners. Allophones of /ㄹ/ in Korean is divided into lateral group and tap group. It has been investigated the reasons for these errors by studying the similarity and the differences between Korean /ㄹ/ pronunciation and its corresponding Chinese pronunciation. In this paper, for the purpose of comparison the speech signal parameters such as energy, waveform in time domain, spectrogram in frequency domain, pitch based on ACF, Formant frequencies are used. From the phonological perspective the speech signal parameters such as signal energy, a waveform in the time domain, a spectrogram in the frequency domain, the pitch (F0) based on autocorrelation function (ACF), Formant frequencies (f1, f2, f3, and f4) are measured and compared. The data, which are composed of the group of Korean words by through a philological investigation, are used and simulated in this paper. According to the simulation results of the energy and spectrogram, there are meaningful differences between Korean native speakers and Chinese leaners for Korean /ㄹ/ pronunciation. The simulation results also show some differences even other parameters. It could be expected that Chinese learners are able to reduce the errors considerably by exploiting the parameters used in this paper.

A Study of response Spectrums and characteristics of Time-Frequency Domain of Microearthquakes in the Central Part of South Korea (남한 중부지역 미소지진들의 응답 스펙트럼 및 시간-주파수 영역에서의 특성에 관한 연구)

  • 이전희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.72-82
    • /
    • 1999
  • The microearthquake and explosion events recorded in the seismic KNUE(Korea National University of Education) network were analyzed. The seismic data were recorded from Dec. 1997 to Dec. 1998. Total of 118 records consisted of 24 earthquake and 4 explosion events were instrumented at 6 stations. Spectral values increases as magnitude increases and the predominant frequency band expands to low frequency. zone as magnitude increases. Three-dimensional spectrograms(time frequency. amplitude) were also synthesized in order to discriminate microearthquakes and artificial underground explosions. The waves from microearthquakes show that frequency content of dominant amplitude appeared above 10 Hz and the discrimination can be performed in almost all the frequency domain of 3-d spectrogram.

  • PDF