• Title/Summary/Keyword: time-dependent phenomena

Search Result 135, Processing Time 0.033 seconds

Unique local deformations of the superelastic SMA rods during stress-relaxation tests

  • Ashiqur Rahman, Muhammad;Rahman Khan, Mujibur
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2006
  • This paper studies mechanical behavior of the superelastic shape memory alloy (SMA) rods in terms of local deformations and time via tensile loading-unloading cycles for both ends fixed end constraints. Besides the unique stress induced martensitic transformation (SIMT), SMA's time dependent behavior when it is in mixed-phase condition upon loading and unloading, also need careful attention with a view of investigating the local deformation of the structural elements made of the same material. With this perspective, the so-called stress-relaxation tests have been performed to demonstrate and investigate the local strains-total strains relationships with time, particularly, during the forward SIMT. Some remarkable phenomena have been observed pertaining to SIMT, which are absent in traditional materials and those unique phenomena have been explained qualitatively. For example, at the stopped loading conditions the two ends (fixed end and moving end of the tensile testing machine) were in fixed positions. So that there was no axial overall deformation of the specimen but some notable increase in the axial local deformation was shown by the extensometer placed at the middle of the SMA specimen. It should be noted that this peculiar behavior termed as 'inertia driven SIMT' occurs only when the loading was stopped at mixed phase condition. Besides this relaxation test for the SMA specimens, the same is performed for the mild steel (MS) specimens under similar test conditions. The MS specimens, however, show no unusual increase of local strains during the stress relaxation tests.

PARTICLE ACCELERATION AND NON-THERMAL EMISSION FROM GALAXY CLUSTERS

  • BRUNETTI GIANFRANCO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.493-500
    • /
    • 2004
  • The existence and extent of non-thermal phenomena in galaxy clusters is now well established. A key question in our understanding of these phenomena is the origin of the relativistic electrons which may be constrained by the modelling of the fine radio properties of radio halos and of their statistics. In this paper we argue that present data favour a scenario in which the emitting electrons in the intracluster medium (ICM) are reaccelerated in situ on their way out. An overview of turbulent-particle acceleration models is given focussing on recent time-dependent calculations which include a full coupling between particles and MHD waves.

자동차에 사용되는 금속성 마찰재와 유기질 마찰재의 마찰 특성에 관한 연구

  • Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.47-52
    • /
    • 1997
  • Friction properties of two different types of automotive friction materials were studied. They were nonasbestos organic and semi-metallic friction materials. The two friction materials were tested using an inertia brake dynamometer to investigate friction stability, rooster tailing phenomena, temperature change of riction couples during drags and stops. Results showed that the level of the friction force is strong function of time, temperature, and speed regardless of the type of friction materials. The change of triction coefficient during braking (rooster tailing) was pronounced when the applied pressure was increased in the case of semi-metallic friction materials. This phenomena appears strongly dependent on the applied pressure, initial brake temperature and ingredients in the friction material.

  • PDF

Development of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under the Severe Accident Conditions

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.663-668
    • /
    • 1996
  • A two-dimensional continuum model for the prediction of the hydrogen mixing phenomena in the containment compartment under the severe accident conditions is developed. The model could predict well the distribution of time-dependent hydrogen concentration for selected HEDL Experiment. For a simulation of these experiments, the hydrogen is mixed uniform over the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen may be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen.

  • PDF

Generation and Decay Phenomena of Environmental Tobacco Smoke in Controlled Experimental Atmosphere Chamber (환경이 조절되는 Chamber 내에서 Environmental Tobacco Smoke의 생성과 감소 현상)

  • 이문수;나도영;안기영;이규서
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.170-176
    • /
    • 1996
  • This paper describes the generation and decay phenomena of gas, vapor and particulate phase components of environmental tobacco smoke in 18 m3 controlled experimental atmosphere chamber. Real time-weighted average concentration ratios of markers were determinated at no ventilation rates and sampling durations of starting to smoking 45 min. Average concentration of major ETS markers was no significant on the mainstream smoke contents of commercial cigarette and decay ratios were dependent on first order kinetic. RSP/nicotine, solanesol and 3-EP were good predictors of ETS concentration in the public indoor field. The concentration ratio of vapor phase and particulate phase components is highly variable to assessment of indoor air quality with ETS. Key words : ETS, chamber study, ETS markers.

  • PDF

Study of Friction Charactedstics of Non-asbestos Organic (NAO) and Semi-metallic Brake Pads During Automotive Braking (자동차 제동시 나타나는 마찰재의 마찰 특성에 관한 연구 (II. 비석면계 유기질 (Non-asbestos Organic) 마찰재와 반금속 (Semi-metallic) 마찰재의 마찰 특성 비교))

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.10-19
    • /
    • 1997
  • Frictional characteristics of two different types of automotive friction materials were studied. They were non-asbestos organic and semi-metallic friction materials. The two friction materials were tested using an inertial brake dynamometer to investigate friction stability, rooster tailing phenomena, temperature change during drags and stops. Results show that the level of the friction force is strong functions of time, temperature, and speed regardless of the type of friction materials. In particular, rooster tailing effects are pronounced in the case of semi-metallic friction materials compared to non-asbestos organic friction materials. The phenomena appear strongly dependent on raw materials contained in the friction materials.

Chirality in Non-Hermitian Photonics

  • Yu, Sunkyu;Piao, Xianji;Park, Namkyoo
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.275-284
    • /
    • 2019
  • Chirality is ubiquitous in physics and biology from microscopic to macroscopic phenomena, such as fermionic interactions and DNA duplication. In photonics, chirality has traditionally represented differentiated optical responses for right and left circular polarizations. This definition of optical chirality in the polarization domain includes handedness-dependent phase velocities or optical absorption inside chiral media, which enable polarimetry for measuring the material concentration and circular dichroism spectroscopy for sensing biological or chemical enantiomers. Recently, the emerging field of non-Hermitian photonics, which explores exotic phenomena in gain or loss media, has provided a new viewpoint on chirality in photonics that is not restricted to the traditional polarization domain but is extended to other physical quantities such as the orbital angular momentum, propagation direction, and system parameter space. Here, we introduce recent milestones in chiral light-matter interactions in non-Hermitian photonics and show an enhanced degree of design freedom in photonic devices for spin and orbital angular momenta, directionality, and asymmetric modal conversion.

YSO Variability and Episodic Accretion

  • Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.35.1-35.1
    • /
    • 2021
  • Variability in young stellar objects (YSOs) can be caused by various time-dependent phenomena associated with star formation, including accretion rates, geometric changes in the circumstellar disks, stochastic hydromagnetic interactions between stellar surfaces and inner disk edges, reconnections within the stellar magnetosphere, and hot/cold spots on stellar surfaces. Among these YSO variability phenomena, bursts of accretion, which are the most remarkable variability, usually occur sporadically, making it challenging to catch the bursting moments observationally. However, the burst accretion process significantly affects the chemical conditions of the disk and envelope of a YSO, which can be used as a prominent tracer of episodic accretion. I will introduce our ensemble studies of YSO variability at mid-IR and submillimeter and also cover the ALMA observations of several YSOs in the burst accretion phase, especially in the view of chemistry.

  • PDF

A fundamental investigation on the stratified charged combustion (성층연소에 관한 실험적 기초연구)

  • 조경국;정인석;정인승
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.39-48
    • /
    • 1981
  • The combustion phenomena of the stratified charged model combustion chamber under the initial conditions of the room temperature and the atmospheric pressure were investigated by using pressure record and high speed Schliern motion picture in comparison with that of the uniformly charged case. The results show that the total burning time is strongly dependent on the turbulent spouting flame jet speed which promotes the combustion process inside the chamber, and the pressure rise-up of stratified charged combustion is rather faster and higher than that of uniformly charged combustion, which can be resulted in the energy saving.

  • PDF

Acceleration of the Time-Dependent Radiative Transfer Calculations using Diffusion Approximation

  • Noh, Tae-Wan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.151-152
    • /
    • 2004
  • An acceleration technique combined with the discrete ordinates method which has been widely used in the solution of neutron transport phenomena is applied to the solution of radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new linearization method is developed to avoid the nonlinearity of the material temperature equation. This new acceleration method is applied to the well known Marshak wave problem, and the numerical result is compared with that of a non-accelerated calculation

  • PDF