• 제목/요약/키워드: time-dependent loading

검색결과 216건 처리시간 0.023초

연속 프리스트레스트 콘크리트 거더교에서 건조수축과 크리프의 영향 (Shrinkage and Creep Effects on Continuous Prestressed Concrete Girder Bridges)

  • 조선규;윤석구;이종민;최연왕;정지승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.417-420
    • /
    • 2004
  • The Prestressed concrete girder bridges(PSC girder bridges), consisting of prestressed concrete girders and cast-in-place deck slabs, are sensitive to creep and shrinkage of concrete. Shrinkage and creep produce additional internal forces md deformations in PSC girder bridges. The long-term behavior of the PSC girder bridges depends on time-dependent properties of materials, amount of prestressing, methods and sequences of construction and age at loading. The purpose of this study is to predict the long-term behavior of PSC girder bridge. For this purpose, Computer program for Time-dependent analysis of PSC girder bridge has been developed. thereafter, Time-dependent analysis using developed computer program was carried out about 3-span continuous PSC girder bridges. Various construction timing sequences were used for parametric study.

  • PDF

Dynamic response of functionally graded plates with a porous middle layer under time-dependent load

  • Dergachova, Nadiia V.;Zou, Guangping
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.269-282
    • /
    • 2021
  • A dynamic analytical solution for a simply supported, rectangular functionally graded plate with a porous middle layer under time-dependent load based on a refined third-order shear deformation theory with a cubic variation of in-plane displacements according to the thickness and linear/quadratic transverse displacement is presented. The solution achieved in the trigonometric series form and rests on the Green's function method. Two porosity types and their influence on material properties, and mechanical behavior are considered. The network of pores is assumed to be empty or filled with low-pressure air, and the material properties are calculated using the power-law distribution idealization. Numerical calculations have been carried out to demonstrate the accuracy of the kinematic model for the dynamic problem, the effect of porosity, thickness of porous layers, power-law index, and type of loading on the dynamic response of an imperfect functionally graded material plate.

Unique local deformations of the superelastic SMA rods during stress-relaxation tests

  • Ashiqur Rahman, Muhammad;Rahman Khan, Mujibur
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.563-574
    • /
    • 2006
  • This paper studies mechanical behavior of the superelastic shape memory alloy (SMA) rods in terms of local deformations and time via tensile loading-unloading cycles for both ends fixed end constraints. Besides the unique stress induced martensitic transformation (SIMT), SMA's time dependent behavior when it is in mixed-phase condition upon loading and unloading, also need careful attention with a view of investigating the local deformation of the structural elements made of the same material. With this perspective, the so-called stress-relaxation tests have been performed to demonstrate and investigate the local strains-total strains relationships with time, particularly, during the forward SIMT. Some remarkable phenomena have been observed pertaining to SIMT, which are absent in traditional materials and those unique phenomena have been explained qualitatively. For example, at the stopped loading conditions the two ends (fixed end and moving end of the tensile testing machine) were in fixed positions. So that there was no axial overall deformation of the specimen but some notable increase in the axial local deformation was shown by the extensometer placed at the middle of the SMA specimen. It should be noted that this peculiar behavior termed as 'inertia driven SIMT' occurs only when the loading was stopped at mixed phase condition. Besides this relaxation test for the SMA specimens, the same is performed for the mild steel (MS) specimens under similar test conditions. The MS specimens, however, show no unusual increase of local strains during the stress relaxation tests.

A reliability-based criterion of structural performance for structures with linear damping

  • Kovaleva, Agnessa
    • Smart Structures and Systems
    • /
    • 제2권4호
    • /
    • pp.313-320
    • /
    • 2006
  • The reliability analysis of structures subjected to stochastic loading involves evaluation of time and probability of the system's residence in a reference domain. In this paper, we derive an asymptotic estimate of exit time for multi-degrees-of-freedom structural systems. The system's dynamics is governed by the Lagrangian equations with linear dissipation and fast additive noise. The logarithmic asymptotic of exit time is found explicitly as a sum of two terms dependent on kinetic and potential energy of the system, respectively. As an example, we estimate exit time and an associated structural performance for a rocking structure.

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.

Debonding failure analysis of FRP-retrofitted concrete panel under blast loading

  • Kim, Ho Jin;Yi, Na Hyun;Kim, Sung Bae;Nam, Jin Won;Ha, Ju Hyung;Kim, Jang-Ho Jay
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.479-501
    • /
    • 2011
  • Even though fiber reinforced polymer (FRP) has been widely used as a retrofitting material, the FRP behavior and effect in FRP retrofitted structure under blast loading, impulsive loading with instantaneous time duration, has not been accurately examined. The past studies have focused on the performance of FRP retrofitted structures by making simplifications in modeling, without incorporating accurate failure mechanisms of FRP. Therefore, it is critical to establish an analytical model that can properly consider the specific features of FRP material in evaluating the response of retrofitted concrete structures under blast loading. In this study, debonding failure analysis technique for FRP retrofitted concrete structure under blast loading is suggested by considering FRP material characteristics and debonding failure mechanisms as well as rate dependent failure mechanism based on a blast resisting design concept. In addition, blast simulation of FRP retrofitted RC panel is performed to validate the proposed model and analysis method. For validation of the proposed model and analysis method, the reported experimental results are compared with the debonding failure analysis results. From the comparative verification, it is confirmed that the proposed analytical model considering debonding failure of FRP is able to reasonably predict the behavior of FRP retrofitted concrete panel under blast loading.

공기부상법을 이용한 활성슬러지의 부상분리 특성 (Thickening Characteristics of Activated Sludge by Air Flotation Process)

  • 박찬혁;홍석원;맹주원;이상협;최용수;문성용
    • 상하수도학회지
    • /
    • 제20권5호
    • /
    • pp.747-753
    • /
    • 2006
  • Air flotation is a solid-liquid separation process that utilizes up-flow microbubbles to thicken activated sludge and enhance clarification efficiency. Continuous air flotation experiments were performed to investigate the effect of operation parameters such as initial MLSS (mixed liquor suspended solid) concentration, air pressure, surface loading rate, air to solid (A/S) ratio, and flotation time on thickening efficiency. An initial activated sludge concentration ranged from 3,000 to 12,000mgSS/L and thickened sludge concentration varied from 6,400 to 28,100mgSS/L. The result showed that the thickening efficiency was mainly dependent on surface loading rate, A/S ratio, and flotation time. The pressure did not affect the thickening efficiency when it kept in the range of 1.6 to 1.8 bar. Experimental results showed that the thickening efficiency of activated sludge was increased only when the feed sludge concentration exceeded 5,000mgSS/L and the thickened concentration was over 20,000mgSS/L. At this time, SS concentration in the clarified liquid was ranged from 5 to 10mg/L.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • 제4권3호
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

Time-dependent analysis of reinforced concrete structures using the layered finite element method

  • Bradford, M.A.;Gilbert, R.I.;Sun, S.C.H.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.561-578
    • /
    • 1999
  • The response of a reinforced concrete structure to loading is both immediate and time-dependent. Under a sustained load, the deflections caused by creep and shrinkage may be several times their instantaneous values. The paper describes a general finite element procedure, based on the so-called layered model, to analyse reinforced concrete members, and shows in particular how the simple Step by Step Method may be incorporated into this procedure. By invoking the Modified Newton Raphson Method as a solution procedure, the accuracy of the finite element method is verified against independent test results, and then applied to a variety of problems in order to demonstrate its efficacy. The method forms a general method for analysing highly indeterminate concrete structures in the time domain.