• Title/Summary/Keyword: time-dependent effect

Search Result 2,013, Processing Time 0.038 seconds

The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration (조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구)

  • So, Jeong-Won;Jang, Ji-Wook;Kim, Soon-Hee;Choi, Jin-Hee;Rhee, John-M.;Min, Byung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.516-522
    • /
    • 2008
  • Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues and the ingrowth of tissue have been reported to be dependent directly of the porosity, pore diameter, pore shape, and porous structure of the scaffold. In this study, porous poly (L-lactide-co-glycolide) (PLGA) scaffolds with five different pore sizes were fabricated to investigate the effect of pore sizes for AF tissue regeneration. Cellular viability and proliferation were assayed by MTT test. Hydroxyproline/DNA content of AF cells on each scaffold was measured. sGAG analyses were performed at each time point of 2 and 6 weeks. Scaffold seeded AF cells were implanted into the back of athymic nude mouse to observe the difference of formation of disc-like tissue depending on pore size in vivo. We confirmed that scaffold with $180{\sim}250{\mu}m$ pores displayed high cell viability in vitro and produced higher ECM than scaffold with other pore sizes in vivo.

Experimental Study on Electrokinetic Streaming Potential in Micropore Channels of Hollw-Fiber Based on General Helmholtz-Smoluchowski's Principle (일반적 Helmholtz-Smoluchowski 원리에 따른 중공사 미세기공 채널에서의 계면동전기 흐름전위에 관한 실험연구)

  • 전명석;조홍일
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • The streaming potential generated by the electrokinetic flow within electric double layer of charged microchannel is applied to determine the zeta potential of hollow-fiber membrane pore by using the general Helmholtz-Smoluchowski equation. The streaming potential is know to provide a useful real-time information on the surface property and the interaction between pore and particles in actual situations and physicochemical conditions. The influence of physicochemical parameters upon the filtration with hollow-fibers has been examined with an in-situ and simultaneously monitoring the streaming potential as well as permeate flux. In particular, the present study examined an experimental method to identify the effect of cake layer which can vary according to the axial position of a hollow-fiber and the progress of membrane fouling by measuring the position-dependent streaming potential. As the latex concentration increases, the permeate flux decreased but the streaming potential increased. The growth of cake layer has been mire developed with increasing latex concentration, however, the effect of surface charges of latexes deposited on the membrane surface leads to increase the streaming potential. With increasing ionic concentration of KCI, both the permeate flux and the streaming potential decrease. The increase of ionic concentration provides a compact cake layer due to the shrinkage of Debye length and the decreased streaming potential results from the weakened ionic flows owing to a thin diffusive double layer.

Optical transition dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates

  • Li, Song-Mei;Kwon, Bong-Joon;Kwack, Ho-Sang;Jin, Li-Hua;Cho, Yong-Hoon;Park, Young-Sin;Han, Myung-Soo;Park, Young-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.121-121
    • /
    • 2010
  • ZnO is a promising material for the application of high efficiency light emitting diodes with short wavelength region for its large bandgap energy of 3.37 eV which is similar to GaN (3.39 eV) at room temperature. The large exciton binding energy of 60 meV in ZnO provide provides higher efficiency of emission for optoelectronic device applications. Several ZnO/ZnMgO multiple quantum well (MQW) structures have been grown on various substrates such as sapphire, GaN, Si, and so on. However, the achievement of high quality ZnO/ZnMgO MQW structures has been somehow limited by the use of lattice-mismatched substrates. Therefore, we propose the optical properties of ZnO/ZnMgO multiple quantum well (MQW) structures with different well widths grown on lattice-matched ZnO substrates by molecular beam epitaxy. Photoluminescence (PL) spectra show MQW emissions at 3.387 and 3.369 eV for the ZnO/ZnMgO MQW samples with well widths of 2 and 5 nm, respectively, due to the quantum confinement effect. Time-resolved PL results show an efficient photo-generated carrier transfer from the barrier to the MQWs, which leads to an increased intensity ratio of the well to barrier emissions for the ZnO/ZnMgO MQW sample with the wider width. From the power-dependent PL spectra, we observed no PL peak shift of MQW emission in both samples, indicating a negligible built-in electric field effect in the ZnO/$Zn_{0.9}Mg_{0.1}O$ MQWs grown on lattice-matched ZnO substrates.

  • PDF

Water Quality Modelling of Daechung Lake - Effect of Yongdam Dam (용담댐의 영향분석을 위한 대청호 수질모델링)

  • Seo, Dong-Il;Lee, Eun-Hyoung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.737-751
    • /
    • 2002
  • Water quality in Daechung Lake was predicted for various discharge conditions of Yongdam dam. The same scenarios were applied as in the previous paper by the authors for Keum River water quality modeling. Effects in water quality due to changes in discharge conditions from Yongdam Dam were less distinct to the Daechung Lake than to the inflowing Keum River due to sink processes in the lake. For the minimum flow year, it is appropriate to maintain Yongdam dam discharge rate to 8.9 $m^3$/sec considering the current field conditions and future predictions of TN and TP concentrations of Yongdam dam. Effect of Yongdam dam discharge conditions to the Daechung Lake water quality were stronger for drier years. However it should be noted that the effects were dependent upon the water quality of Yongdam discharge at the same time. Therefore, water quality management effort should be emphasized before the discussion over the discharge volume of Yongdam dam. The input data sets for simulations in this study were formulated using the available data and assumptions based on authors experiences for the fields. Therefore, continued data collection effort will ensure the validity of this study.

Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide (화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과)

  • Lee, Min Young
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1342-1350
    • /
    • 2013
  • We examined the effect of hydrogen sulfide ($H_2S$) in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased by cobalt chloride ($CoCl_2$), a well-known hypoxia mimetic agent in a time- and dose- dependent manner. Sodium hydrosulfide (NaHS, a donor of $H_2S$) pretreatment before exposure to $CoCl_2$ significantly attenuated the $CoCl_2$-induced decrease of cell viability. $CoCl_2$ treatment resulted in an increase of intracellular ROS generation, which is inhibited by NaHS or N-acetyl-cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by NaHS or NAC. The $CoCl_2$-induced increase of the Bax/Bcl-2 ratio was attenuated by NaHS, NAC, and SB 203580 (p38 MAPK inhibitor). The $CoCl_2$-induced decrease of cell viability was also attenuated by NaHS, NAC, and SB 203580 pretreatment. Additionally, NaHS inhibited the $CoCl_2$-induced COX-2. Similar to the effect of NaHS, NAC blocked $CoCl_2$-induced COX-2 expression. Furthermore, NS-398 (a selective COX-2 inhibitor) attenuated not only the $CoCl_2$-induced increase of the Bax/Bcl-2 ratio, it also decreased cell viability. Taken together, $H_2S$ protects primary cultured mouse hepatocytes against $CoCl_2$-induced cell injury through inhibition of the ROS-activated p38 MAPK cascade and the COX-2 pathway.

Antibacterial effect of electrolyzed water on Streptococcus mutans (전기분해수소수의 Streptococcus mutans에 대한 항균효과)

  • Kim, Ji-Hye;Youn, Ha-Young;Kim, Eun-Kyong;Lee, Young-Eun;Jang, Ji-Eon;Song, Keun-Bae
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.5
    • /
    • pp.527-533
    • /
    • 2021
  • Objectives: Electrolyzed water has been proven to have antibacterial effects against various microorganisms. However, there are only a few studies about effects of electrolyzed water on oral bacteria. The purpose of this study was to examine the antibacterial effect of electrolyzed water on Streptococcus mutans in vitro. Methods: S. mutans KCOM 1054 was treated with electrolyzed water for 1 or 3 minutes and plated on Mitis Salivarius agar with 15% sucrose and bacitracin. After incubation for 48 hours, colony forming units (CFU) were counted, and dental plaque was quantified by crystal violet staining. Results: The growth of S. mutans was significantly inhibited by electrolyzed water (p<0.001). In addition, the dental plaque formation by S. mutans was decreased in a time-dependent manner by exposure to electrolyzed water (p<0.001). Conclusions: Our results suggest that electrolyzed water can effectively prevent dental caries by inhibiting growth of (and the formation of dental plaque by) S. mutans.

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.

Extending the Storage Periods of Zanthoxylum schinifolium Seed Oil using Sodium Bicarbonate and Ascorbic Acid (중탄산나트륨과 아스코르브산을 이용한 산초유의 저장기간 연장)

  • Kim, Hak Gon;Kang, Seung Mi;Yong, Seong Hyeon;Seol, Yu Won;Kim, Do Hyeon;Park, Jun Ho;Yu, Chan Yeol;Choi, Myung Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.421-427
    • /
    • 2020
  • Morus alba, Anti-obesity, C57BL/6 Mice, Expression, Flavonoid, Gene, Mulberry Background: The seed oil of Zanthoxylum schinifolium S. et Z. (sancho) is a traditional cooking oil that has long been sold at a very high price however, depending on the method of extraction and storage, this oil becomes rancid occurs very quickly. Therefore, this study aimed to find a material that prevents rancidity and improves the storage properties of sancho oil. Methods and Results: Sancho oil was extracted using an extraction press, and acid values were compared with commercially available vegetable oils, sancho oil had a higher acid value than other vegetable oils. A very high acid value was observed in sancho oil stored for 6 months, regardless of temperature, requiring an effective storage method. The high acid value and the decrease in turbidity of sancho oil are dependent on the days of sedimentation. Treatment with sodium bicarbonate by concentration resulted in minimal changes in acid value over time. However, minor differences were detected among the treatment concentrations. Ascorbic acid was added to maximize the effect of sodium bicarbonate, and it was observed that ascorbic acid did not improve the antioxidant effect. The sodium bicarbonate and ascorbic acid mixture resulted in minimal change in acid value at temperature up to 25℃. Conclusions: Sancho oil becomes rancid very quicky and requires efficient storage techniques. Sodium bicarbonate and ascorbic acid have been proven to be useful as safe anti-racidity agents without causing harm to humans.

Gossypii Semen oil alleviates memory dysfunction in scopolamine-treated mice (면화자 정유의 기억력 손상 완화 효과)

  • Lee, Jihye;Jung, Eun Mi;Lee, Eunhong;Jang, Gwi Yeong;Seo, Kyung Hye;Kim, Mi Ryeo;Jung, Ji Wook
    • The Korea Journal of Herbology
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Objectives : Gossypium arboreum (cotton) is traditionally used to treat various health disorders. However, anti-amnesic effect of G. arboreum has not been reported. The objective of this study was to investigate in-vivo the anti-amnesic effects along with in vitro antioxidant and acetylcholinesterase (AChE) inhibition potential in G. arboreum seed essential oil. Methods : The essential oil of G. arboreum obtained by solid phase microextraction (SPME) techniques were identified by gas chromatography-mass spectroscopy (GC-MS). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay were performed to determine the antioxidant activity at various concentrations (312.5, 625, 1250, 2500, 5000, 10000 ㎍/㎖. Y-maze, passive avoidance and Morris water maze tests were carried out to evaluate improved effect on scopolamine (1 mg/kg)-induced memory dysfunction at the dose level of 50, 100 and 200 mg/kg. Donepezil (5 mg/kg) was used as a positive drug control. We performed acetylcholinesterase (AChE) activity assay in ex vivo. Results : Five volatile compounds were identified in G. arboreum. The assays of DPPH and ABTS revealed that G. arboreum increased antioxidant activity in a dose-dependent manner. G. arboreum ameliorated the percent of spontaneous alternation in the Y-maze test, shortened step-through latency in the passive avoidance test, and increased swimming time in the target zone in the Morris water maze test. In addition, G. arboreum inhibited the AChE activity. Conclusions : Based on these findings, G. arboreum may aid in the prevention and treatment of learning and memory-deficit disorders through antioxidant and AChE inhibitory activities.

Development of Optimal Antiviral Coating Method for the Air Filtration System of Subway Station (지하역사 승강장 공조 시스템 필터용 항바이러스 코팅 성능 및 재생 성능 평가)

  • Park, Dae Hoon;Hwang, Jungho;Shin, Dongho;Kim, Younghun;Lee, Gunhee;Park, Inyong;Kim, Sang Bok;Hong, Keejung;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.18 no.1
    • /
    • pp.9-21
    • /
    • 2022
  • In this study, a novel antiviral coating method for the air filtration system of subway station was investigated. Using dry aerosol coating process, we developed a high-performance antiviral air filter with spark discharger and carbon brush type ionizer. Silver nanoparticles were produced by a spark discharge generation system with ion injection system and were used as antiviral agents coated onto a medium grade air filter. The pressure drop, filtration efficiency, and antiviral ability of the filter against aerosolized MS2 virus particles as a surrogate of SARS-CoV-2 virus were tested with dust contamination. Dust contamination caused the increase of the filtration efficiency and pressure drop, while the antiviral agents (in this study, silver nanoparticles) coating did not have any significant effect on the filtration efficiency and pressure drop. Using these properties, we suggested a novel method to maximize the antiviral performance of the antiviral air filter that was contaminated by dust particles. Moreover theoretical analysis of antiviral ability with dust contamination and re-coated antiviral agents was carried out using a mathematical model to calculate the time-dependent antiviral effect of the filter under actual conditions of subway station. Our model can be used to apply on antiviral air filtration system of subway station for prevention of pandemic diffusion, and predict the life cycle of an antiviral filter.