• Title/Summary/Keyword: time-dependent diffusion

Search Result 177, Processing Time 0.033 seconds

PARTICLE ACCELERATION IN SUPERNOVA REMNANTS

  • KANG, HYESUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.545-548
    • /
    • 2015
  • Most high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) in supernova remnants (SNRs) within the Galaxy. Plasma and MHD simulations have shown that the self-excitation of MHD waves and amplification of magnetic fields via plasma instabilities are an integral part of DSA for strong collisionless shocks. In this study we explore how plasma processes such as plasma instabilities and wave-particle interactions can affect the energy spectra of CR protons and electrons, using time-dependent DSA simulations of SNR shocks. We demonstrate that the time-dependent evolution of the shock dynamics, the self-amplified magnetic fields and $Alfv{\acute{e}nic$ drift govern the highest energy end of the CR energy spectra. As a result, the spectral cutoffs in nonthermal X-ray and ${\gamma}$-ray radiation spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. We also find that the maximum energy of CR protons can be boosted significantly only if the scale height of the magnetic field precursor is long enough to contain the diffusion lengths of the particles of interests. Thus, detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations are crucial for understanding the nonthermal radiation from CR acceleration sources.

Spin-up for stratified fluid in a cylinder with time-dependent rotation rate (시간적으로 변하는 각속도를 가지는 실린더 내부의 비균질 유체의 스핀업)

  • Kim, K.S.;Hyun, J.M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.323-326
    • /
    • 2006
  • Numerical solutions for spin-up problem of a thermally stratified fluid in a cylinder with an insulating sidewall and time-dependent rotation rate are presented. Detailed results are given for aspect ratio of O(1), fixed Ekman number $10-^{4}$, Rossby number 0.05 and Prandtl number O(1). Angular velocity of a cylinder wall changes with following formula, $\Omega_f=\Omega_i+\Delta\Omega[1-\exp(-t/t_c)]$. Here, this $t_c$, value, which is very significant in present study, represents that how fast/slow the angular velocity of the cylinder wall reaches final angular velocity. The normalized azimuthal velocity and meridional flow plots for several tc value which cover ranges of the stratification parameter S(1 ~ 10) are presented. The role of viscous-diffusion and Coriolis term in present study is examined by diagnostic analysis of the azimuthal velocity equation.

  • PDF

Influence of Differential Moisture Distribution on SRC Column Shortening

  • Seol Hyun-Cheol;Kim Jin-Keuna;Kim Yun-Yonga;Kwon Seung-Heea
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.423-426
    • /
    • 2005
  • Steel reinforced concrete (SRC) columns, which are widely employed in high-rise buildings, exhibit particular time-dependent behavior due to creep and shrinkage of the concrete, and this behavior may cause problems related to serviceability and structural stability. SRC columns also exhibit a time-dependent, cross-sectional relative humidity distribution that differs from reinforced concrete (RC) columns, due to the presence of an inner steel plate, which interferes with the moisture diffusion of concrete. This differential moisture distribution of SRC columns may reduce the drying shrinkage and the drying creep as contrasted with RC columns. Therefore, we propose that the differential moisture distribution be taken into account to accurately predict SRC column shortening.

  • PDF

A Study on the Flow Behavior of the Viscoelastic Fluids in the Falling Ball Viscometer (낙구식 점도계를 이용한 점탄성유체의 유동에 관한 연구)

  • 전찬열
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1988
  • The falling ball viscometer has been widely used for measuring the viscosity of the Newtonian fluids because of its simple theory and low cost. The use of the falling ball viscometer for measuring the non-Newtonian viscosity has been of interest to rheologists for some years. The analysis of the experimental results in a falling ball viscometer rest on Stokes law which yields the terminal velocity for a sphere moving through an infinite medium of fluids. An attempt to use the falling ball viscometer to measure the non-Newtonian viscosity in the intermediate shear rate ranEe was sucessfully accomplished by combining the direct experimental obserbations with a simple analytical model for the average shear-stress and shear rate at, the surface of a sphere. In the experiments with highly viscoelastic polyacrylamide solutions the terminal velocity was observed to be dependent on the time interval between the dropping of successive balls. The time-dependent phenomenon was used to determine characteristic diffusion times of the concentrated solutions of polyacrylamide.

  • PDF

Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers

  • Wang, Haojie;Yan, Wei;Li, Chunyang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.599-611
    • /
    • 2020
  • A state-space method is developed to investigate the time-dependent behaviors of an angle-ply cylindrical shell in cylindrical bending with surface-bonded piezoelectric layers. Both the interfacial diffusion and sliding are considered to describe the properties of the imperfect interfaces. Particularly, a matrix reduction technique is adopted to establish the transfer relations between the elastic and piezoelectric layers of the laminated shell. Very different from our previous paper, in which an approximate numerical technique, i.e. power series expansion method, is used to deal with the time-dependent problems, the exact solutions are derived in the present analysis based on the piezoelasticity equations without any assumptions. Numerical results are finally obtained and the effects of imperfect interfaces on the electro-mechanical responses of the laminated shell are discussed.

Combustion Characteristics and Soot Formation in a Jet Diffusion Flame (제트 확산화염의 연소특성과 매연생성에 관한 연구)

  • 이교우;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2712-2723
    • /
    • 1994
  • Numerical simulation of an axisymmetric ethylene-air jet diffusion flame has been carried out in order to investigate flame dynamics and soot formation. The model solves the time-dependent Navier-Stokes equations and includes models for soot formation, chemical reaction, molecular diffusion, thermal conduction, and radiation. Numerically FCT(Flux Corrected Transport) and DOM(Discrete Ordinate Method) methos are used for convection and radiation trasport respectively. Simulation was conducted for a 5 cm/sec fuel jet flowing into a coflowing air stream. The maximum flame temperature was found to be approximately 2100 K, and was located at an axial position of approximately 5 cm from the base of the flame. The maximum soot volume fraction was about $7{\times}10^{-7}$, and was located within the high temperature region where the fuel mole fraction ranges from 0.01 to 0.1. The buoyancy-driven low-frequency(12~13 Hz) structures convected along the outer region of the flame were captured. In case without radiation trasport, the maximum temperature was higher by 150 K than in case with radiation. Also the maximum soot volume fraction reached about $8{\times}10^{-6}$. As the the hydrocarbon fuel forms many soot particles, the radiation transport becomes to play a more important role.

Analysis of Time-Dependent Deformation of CFRP Considering the Anisotropy of Moisture Diffusion

  • Arao, Yoshihiko;Koyanagi, Jun;Hatta, Hiroshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.359-372
    • /
    • 2008
  • The moisture absorption behavior of carbon fiber-reinforced plastic (CFRP) and its effect on dimensional stability were examined. Moisture diffusivity in CFRP was determined by measuring a specimen's weight during the moisture absorption test. Three types of CFRP specimens were prepared: a unidirectionally reinforced laminate, a quasi-isotropic laminate and woven fabric. Each CFRP was processed into two geometries - a thin plate for determination of diffusivity and a rod with a square cross-section for the discussion of two-dimensional diffusion behavior. By solving Fick's law expanded to 3 dimensions, the diffusivities in the three orthogonal directions were obtained and analyzed in terms of the anisotropy of CFRP moisture diffusion. Coefficients of moisture expansion (CMEs) were also obtained from specimen deformation caused by moisture absorption. During moisture absorption, the specimen surfaces showed larger deformation near the edges due to the distribution of moisture contents. This deformation was reasonably predicted by the finite element analysis using experimentally determined diffusivities and CMEs. For unidirectional CFRP, the effect of the fiber alignment on CME was analyzed by micromechanical finite element analysis (FEA) and discussed.

Analysis on Changes in Strength, Chloride Diffusion, and Passed Charges in Normal Concrete Considering Ages and Mix Proportions (재령 및 배합특성을 고려한 보통 콘크리트의 강도, 염화물 확산계수, 통과전하량 변화 분석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Concrete behavior in early-age is changing due to hydration reaction with time, and a resistance to chloride attack and strength development are different characterized. In the present work, changing strength and resistance to chloride attack are evaluated with ages from 28 days to 6 months. For the purpose, strength, diffusion coefficient, and passed charge are evaluated for normal concrete with 3 different mix proportions considering 28-day and 6-month curing conditions. With increasing concrete age, the changing ratio of strength falls on the level of 135.3~138.3%, while diffusion coefficient and passed charge shows 41.8%~51.1% and 53.6%~70.0%, respectively. The results of chloride diffusion coefficient and passed charge show relatively similar changing ratios since they are much dependent on the chloride migration velocity in electrical field. The changing ratios in chloride behaviors are evaluated to be much larger than those in compressive strength since the ion transport mechanism is proportional to not porosity but square of porosity.

Service life evaluation in RC structure near to sea shore through accelerated chloride diffusion test (촉진 염화물 시험결과를 이용한 비말대 콘크리트 구조물의 내구수명 평가)

  • Kim, Jeong-Su;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.30-36
    • /
    • 2019
  • In order to evaluate service life of RC (Reinforced Concrete) structures exposed to chloride attack, chloride penetration analysis is required referred to the chloride diffusion coefficient from the actual mix proportions. In this work, accelerated diffusion coefficients are obtained from NT BUILD 492 and ASTM C 1202 and the related apparent diffusion coefficients are derived via the previously proposed relationship for RC structures near to sea shore. Considering the properties of the mix proportions and the most conservative analysis conditions like critical and surface chloride contents, service lifes in column and exterior wall member are evaluated through conventional program LIFE 365 ver.2. The different built-up period of 10 and 15 years has no significant effect on service life. The results from mix proportions with slag show longer than 75 years of service life with the help of higher time dependent parameter and lower initial diffusion coefficient.

Time Dependent Chloride Transport Evaluation of Concrete Structures Exposed to Marine Environment (해안 환경 하에 있는 콘크리트 구조물의 시간의존적 염화물침투 평가)

  • Song, Ha-Won;Pack, Seung-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.585-593
    • /
    • 2007
  • This paper presents a model for durability evaluation of concrete structures exposed to marine environment, considering mainly a build-up of surface chloride $(C_s)$ as well as diffusion coefficient (D) and chloride threshold level $(C_{lim})$. In this study, time dependency of $C_s$ and D were extensively studied for more accurate evaluation of service life of concrete structures. An analytical solution to the Fick's second law was presented for prediction of chloride ingress for time varying $C_s$. For the time varying $C_s$, a refined model using a logarithm function for time dependent $C_s$ was proposed by the regression analysis, and averaging integrated values of the D with time over exposed duration were calculated and then used for prediction of the chloride ingress to consider time dependency of D. Durability design was also carried out for railway concrete structures exposed to marine environment to ensure 100 years of service life by using the proposed models along with the standard specification on durability in Korea. The proposed model was verified by the so-called performance-based durability design, which is widely used in Europe. Results show that the standard specification underestimates durability performances of concrete structures exposed to marine environment, so the cover depth design using current durability evaluation in the standard specifications is very much conservative. Therefore, it is found that utilizing proposed models considering time dependent characteristics of $C_s$ and D can evaluate service lift of concrete structures in marine environment more accurately.