• Title/Summary/Keyword: time-delay estimation

Search Result 411, Processing Time 0.026 seconds

RLSLTDE Algorithm for Bearing Estimation of the Underwater Acoustic Signal (수중음향신호 입사방위 추정을 위한 RLSLTDE 알고리즘)

  • Choi, Jae-Yong;Son, Kweon;Dho, Kyeong-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.84-90
    • /
    • 2000
  • The bearing detection of radiated target noise is very important at underwater acoustic measurement and passive detection. It differs the arrival tines of received signal at each sensor. Therefore, the bearing can be obtained from the time delay. This paper proposes a new algorithm using the RLSL adaptive filter for TDE. The proposed method is particularly attractive when there is a limitation of priori information about the received signal spectra and when the delay is subject to variation. As the simulation results, it is shown that the proposed algorithm has better convergence characteristics and TDE speed, and so that the usefulness of proposed algorithm is confirmed.

  • PDF

Delay Tolerant Packet Forwarding Algorithm Based on Location Estimation for Micro Aerial Vehicle Networks

  • Li, Shiji;Hu, Guyu;Ding, Youwei;Zhou, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1377-1399
    • /
    • 2020
  • In search and rescue mission, micro aerial vehicles (MAVs) are typically used to capture image and video from an aerial perspective and transfer the data to the ground station. Because of the power limitation, a cluster of MAVs are required for a large search area, hence an ad-hoc wireless network must be maintained to transfer data more conveniently and fast. However, the unstable link and the intermittent connectivity between the MAVs caused by MAVs' movement may challenge the packet forwarding. This paper proposes a delay tolerant packet forwarding algorithm based on location estimation for MAV networks, called DTNest algorithm. In the algorithm, ferrying MAVs are used to transmit data between MAVs and the ground station, and the locations of both searching MAVs and ferrying MAVs are estimated to compute the distances between the MAVs and destination. The MAV that is closest to the destination is selected greedy to forward packet. If a MAV cannot find the next hop MAV using the greedy strategy, the packets will be stored and re-forwarded once again in the next time slot. The experiment results show that the proposed DTNest algorithm outperforms the typical DTNgeo algorithm in terms of packet delivery ratio and average routing hops.

TIME DELAYED CONTROLLER를 이용한 유압 시스템의 위치 제어

  • 진성무;현장환;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.204-208
    • /
    • 2001
  • Position control of the electro-hydraulic servo indexing system in a flexible forging machine was investigated Flexible forging machine forges an axial type workpiece in the radial direction as well as in the axial direction. The role of the indexing system is to rotate a workpiece fast and accurately to a desired position for continuous shaping. Since the inertia of a workpiece changes during each forging step, a control technique which is robust to inertia variation should be adopted to the position control of the workpiece. In this study, time delayed control technique is applied to the servo system. Time delayed control method does not depend on estimation of specific parameters. Rather, it depends on the direct estimation of a function representing the effect of uncertainties. Direct estimation is accomplished using time delay and the gathered information is used to cancel the unknown dynamics is accomplished using disturbances simultaneously. Experimental result show that the time delayed controller is robust to inertia variation of the load, and satisfactory performance on the sposition accuracy is obtained compared to the contentional feedback control.

Target Velocity Estimation using FFT Method

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • This paper studied a method of estimating target information using a radar in wireless communication. Position information on the target can be estimated angle, distance and velocity. The velocity information can be estimated since the Doppler frequency is changed in the moving target. The signal incident on the receiving array antenna is multiplied by the delay time and the reference signal to represent the output signal. This output signal is estimated by applying FFT (Fast Fourier Transform) after calculating signal correlation through correlation integrator. Since the output signal must be calculated within the correlator, it should be processed with the Dwell time. The correlation signal of the correlation integrator outside this Dwell time is indicated by the velocity measurement error. The FFT is applied to the signal that has passed through the correlated integrator in order to estimate the distance of the signal. The Doppler resolution must be improved because the FFT estimates target information using the Doppler information. The Doppler resolution decreases with increasing the integration time. The velocity information estimation should have no spread of the velocity. As a result of the simulation, there was no spread of the target velocity in this study.

Position error estimation of sub-array in passive ranging sonar based on a genetic algorithm (유전자 알고리즘 기반의 수동측거소나 부배열 위치오차 추정)

  • Eom, Min-Jeong;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol;Oh, Se-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.630-636
    • /
    • 2019
  • Passive Ranging Sonar (PRS) is a type of passive sonar consisting of three sub-array on the port and starboard, and has a characteristic of detecting a target and calculating a bearing and a distance. The bearing and distance calculation requires physical sub-array position information, and the bearing and distance accuracy performance are deteriorated when the position information of the sub-array is inaccurate. In particular, it has a greater impact on distance accuracy performance using plus value of two time-delay than a bearing using average value of two time-delay. In order to improve this, a study on sub-array position error estimation and error compensation is needed. In this paper, We estimate the sub-array position error based on enetic algorithm, an optimization search technique, and propose a method to improve the performance of distance accuracy by compensating the time delay error caused by the position error. In addition, we will verify the proposed algorithm and its performance using the sea-going data.

Reclaimer Control: Modeling , Parameter Estimation, and a Robust Smith Predictor Design (원료채집기의 제어: 모델링, 계수추정, 견실한 스미스 예측기의 설계)

  • Kim, Sung-Hoon;Hong, Keum-Shik;Kang, Dong-Hunn
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.923-931
    • /
    • 1999
  • In this paper, a modeling and a robust time-delay control for the reclaimer are investigated. Supplying the same amount of a raw material throughout the reclamation process from the raw yard to a sinter plant is important to keep the quality of the molten steel uniform in blast furnaces. As the actual parameter values of the reclaimer are not available, the boom rotational dynamics are modeled as a second order differential equation with unknown coefficients. The unknown parameters in the nominal model are estimated using a recursive estimation method. Another important factor in the control design of the reclaimer is the large time-delay in output measurement. Assuming a multiplicative uncertainty, that accounts for both the unstructured uncertainty neglected in the modeling and the structured uncertainty contained in the parameter estimation, a robust Smith predictor is designed. A robust stability criterion for the multiplicative uncertainty is also derived. Following the work of Goodwin et al. [4], a quantifying procedure of the multiplicative uncertainty bound, through experiments , is described. Experimental and simulation results are provided.

  • PDF

Attitude Estimation for the Biped Robot with Vision and Gyro Sensor Fusion (비전 센서와 자이로 센서의 융합을 통한 보행 로봇의 자세 추정)

  • Park, Jin-Seong;Park, Young-Jin;Park, Youn-Sik;Hong, Deok-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.546-551
    • /
    • 2011
  • Tilt sensor is required to control the attitude of the biped robot when it walks on an uneven terrain. Vision sensor, which is used for recognizing human or detecting obstacles, can be used as a tilt angle sensor by comparing current image and reference image. However, vision sensor alone has a lot of technological limitations to control biped robot such as low sampling frequency and estimation time delay. In order to verify limitations of vision sensor, experimental setup of an inverted pendulum, which represents pitch motion of the walking or running robot, is used and it is proved that only vision sensor cannot control an inverted pendulum mainly because of the time delay. In this paper, to overcome limitations of vision sensor, Kalman filter for the multi-rate sensor fusion algorithm is applied with low-quality gyro sensor. It solves limitations of the vision sensor as well as eliminates drift of gyro sensor. Through the experiment of an inverted pendulum control, it is found that the tilt estimation performance of fusion sensor is greatly improved enough to control the attitude of an inverted pendulum.

An Adaptive Time Delay Estimation Method Based on Canonical Correlation Analysis (정준형 상관 분석을 이용한 적응 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.548-555
    • /
    • 2013
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative delay between two or more received signals for the direct signal must be determined. Although the generalized cross-correlation method is the most popular technique, an approach based on eigenvalue decomposition (EVD) is also popular one, which utilizes an eigenvector of the minimum eigenvalue. The performance of the eigenvalue decomposition (EVD) based method degrades in the low SNR and the correlated environments, because it is difficult to select a single eigenvector for the minimum eigenvalue. In this paper, we propose a new adaptive algorithm based on Canonical Correlation Analysis (CCA) in order to extend the operation range to the lower SNR and the correlation environments. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue in the generalized eigenvalue decomposition (GEVD). The estimated eigenvector contains all the information that we need for time delay estimation. We have performed simulations with uncorrelated and correlated noise for several SNRs, showing that the CCA based algorithm can estimate the time delays more accurately than the adaptive EVD algorithm.

Estimation and Analysis of MIMO Channel Parameters using the SAGE Algorithm (SAGE 알고리즘을 이용한 MIMO 채널 파라미터 추정과 분석)

  • Kim, Joo-Seok;Yeo, Bong-Gu;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.79-84
    • /
    • 2017
  • This paper is a multi-input multi-path (Multiple-input multiple-output: MIMO) using a space-alternating generalized expectation maximization(SAGE) algorithm in the parameter channel and determine the channel estimation performance. Estimated by the algorithm, SAGE time-varying channel environment, the channel parameters estimated from the parameters of the channel measured in the island region 781 of the band in order to compare the performance and compares the original data. This allows you to check the performance of the algorithm SAGE and is highly stable to delay spread (Delay Spread), the diffusion angle of arrival (Arrive of Angular Spread) performance in terms of accuracy down through the SAGE algorithm for estimating a more general calculation parameters.

A Study on Real Time Estimation System of Fire Sound Source Localization (소화기 발사음의 실시간 위치 추정 시스템에 관한 연구)

  • Roh, Chang-Su;Park, Byung-Su;Do, Sung-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.768-775
    • /
    • 2009
  • In this paper, the sound source localization system in real time which uses the time delay of arrival signal is proposed. This system uses minimum microphones and surveillance camera for estimation of the sound source localization and sound direction. To apply this system to the military field, four models(model1~model4) are derived. Model 1 can be used to evaluate the sound source localization at the long distance. Model2 and model3 can be applied to estimate the sound direction. Model4 is useful for the special purpose and potable device. It is possible for this system to be used for the military guard and surveillance. As a result of experiments, It is shown that this system can estimate the sound source localization and the sound direction using minimum microphones.