• Title/Summary/Keyword: time varying Ricean fading

Search Result 2, Processing Time 0.015 seconds

Sum rate and Energy Efficiency of Massive MIMO Downlink with Channel Aging in Time Varying Ricean Fading Channel

  • Yang, Lihua;Yang, Longxiang;Zhu, Hongbo;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1098-1112
    • /
    • 2018
  • Achievable sum rate and energy efficiency (EE) are investigated for the massive multiple-input multiple-output (Massive MIMO) downlink with channel aging in the time varying Ricean fading channel. Specifically, the expression of the achievable sum rate of the system for the maximum ratio transmission (MRT) precoder with aged channel state information (CSI) in the time varying Ricean fading channel is first presented. Based on the expression, the effect of both channel aging and the Ricean factor on the power scaling law are studied. It is found that the transmit power of base station (BS) is scaled down by $1/{\sqrt{M}}$(where M is the number of the BS antennas) when the Ricean factor K is equal to zero (i.e., time varying Rayleigh fading channel), indicating that aged CSI does not affect the power scaling law. However, the transmit power of the BS is scaled down by 1/M for the time varying Ricean fading channel (where $K{\neq}0$) indicating that the Ricean factor affects the power scaling law and sum rate, and channel aging only leads to a reduction of the sum rate. Second, the EE of the system is analyzed based on the general power consumption model. Both the theoretical analysis and the simulations show that the channel aging could degrade the sum rate and the EE of the system, and it does not affect the power scaling law.

Optimum Power Allocation for Distributed Antenna Systems with Large Scale Fading-only Feedback (Large Scale Fading값만을 피드백하는 분산 안테나 시스템을 위한 최적 전력 할당)

  • Lim, Dong-Ho;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.635-642
    • /
    • 2008
  • We propose the Optimum Power Allocation (OPA) scheme for Distributed Antenna Systems(DAS) in the time-varying Rayleigh fading channel. Recently, the OPA schemes which uses the Channel State Information (CSI) including a small scale (fast) fading have been proposed. However, the channel is changing vary fast over time due to small scale fading, therefore Bit Error Rate (BER) increases. Because of this reason, we derive the OPA for minimizing BER in DAS, which only uses a large scale fading to CSI and excepts a small scale fading. The simulation results show that the proposed OPA achieves better BER performance than conventional OPA considering a small scale fading in time-varying Rayleigh fading channel, and also has similar performance in Rayleigh flat-fading environment. The BER performance of proposed OPA which derived in Rayleigh fading channel is similar to minimum BER of Ricean fading channel which has small Line-of-Sight (LOS).