• Title/Summary/Keyword: time to failure

Search Result 4,024, Processing Time 0.028 seconds

Seismic reliability assessment of base-isolated structures using artificial neural network: operation failure of sensitive equipment

  • Moeindarbari, Hesamaldin;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.425-436
    • /
    • 2018
  • The design of seismically isolated structures considering the stochastic nature of excitations, base isolators' design parameters, and superstructure properties requires robust reliability analysis methods to calculate the failure probability of the entire system. Here, by applying artificial neural networks, we proposed a robust technique to accelerate the estimation of failure probability of equipped isolated structures. A three-story isolated building with susceptible facilities is considered as the analytical model to evaluate our technique. First, we employed a sensitivity analysis method to identify the critical sources of uncertainty. Next, we calculated the probability of failure for a particular set of random variables, performing Monte Carlo simulations based on the dynamic nonlinear time-history analysis. Finally, using a set of designed neural networks as a surrogate model for the structural analysis, we assessed once again the probability of the failure. Comparing the obtained results demonstrates that the surrogate model can attain precise estimations of the probability of failure. Moreover, our proposed approach significantly increases the computational efficiency corresponding to the dynamic time-history analysis of the structure.

A Comparison of Reliability Factors of Software Reliability Model Following Lifetime Distribution Dependent on Pareto and Erlang Shape Parameters (파레토 및 어랑 형상모수에 의존한 수명분포를 따르는 소프트웨어 신뢰성 모형에 대한 신뢰도 특성요인 비교 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.2
    • /
    • pp.71-80
    • /
    • 2017
  • Software reliability is one of the most elementary and important problems in software development In order to find the software failure occurrence, the instantaneous failure rate function in the Poisson process can have a constant, incremental or decreasing tendency independently of the failure time. In this study, we compared the reliability performance of the software reliability model using the parameters of Pareto life distribution with the intensity decreasing pattern and the shape parameter of Erlang life distribution with the intensity increasing and decreasing pattern in the software product testing. In order to identify the software failure environment, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, we compare and evaluate software reliability by applying software failure time data. The reliability of the Erlang and Pareto life models is shown to be higher than that of the Pareto lifetime distribution model when the shape parameter is higher and the Erlang model is more reliable when the shape parameter is higher. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing basic knowledge using software failure analysis.

Mechanical Ventilation of the Children (소아의 기계적 환기요법)

  • Park, June Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.12
    • /
    • pp.1310-1316
    • /
    • 2005
  • Mechanical ventilation in children has some differences compared to in neonates or in adults. The indication of mechanical ventilation can be classified into two groups, hypercapnic respiratory failure and hypoxemic respiratory failure. The strategies of mechanical ventilation should be different in these two groups. In hypercapnic respiratory failure, volume target ventilation with constant flow is favorable and pressure target ventilation with constant pressure is preferred in hypoxemic respiratory failure. For oxygenation, fraction of inspired oxygen($FiO_2$) and mean airway pressure(MAP) can be adjusted. MAP is more important than FiO2. Positive end expiratory pressure(PEEP) is the most potent determinant of MAP. The optimal relationship of $FiO_2$ and PEEP is PEEP≒$FiO_2{\times}20$. For ventilation, minute volume of ventilation(MV) product of tidal volume(TV) and ventilation frequency is the most important factor. TV has an maximum value up to 15 mL/kg to avoid the volutrauma, so ventilation frequency is more important. The time constant(TC) in children is usually 0.15-0.2. Adequate inspiratory time is 3TC, and expiratory time should be more than 5TC. In some severe respiratory failure, to get 8TC for one cycle is impossible because of higher frequency. In such case, permissive hypercapnia can be considered. The strategy of mechanical ventilation should be adjusted gradually even in the same patient according to the status of the patient. Mechanical ventilators and ventilation modes are progressing with advances in engineering. But the most important thing in mechanical ventilation is profound understanding about the basic pulmonary mechanics and classic ventilation modes.

A Study on RCM Approach to Catenary System of Electric Railway (전기철도 가공전차선로의 신뢰성 기반 유지보수(RCM)에 관한 연구)

  • Youn, Eung-Kyu;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1457-1465
    • /
    • 2016
  • A RCM approach to maintenance of the catenary system of electric railway is proposed. The proposed RCM approach provides a maintenance-oriented FMECA procedure to derive critical failure modes by analyzing failure effects and a RCM decision logic tree to suggest optimal maintenance works for the derived failure modes. By applying the proposed RCM procedures to the catenary system of high speed railway, it is suggested that strand breaks of dropper and voltage equalizing wire, and trolly wire wear-out are the critical failure modes for whom maintenance works based on condition monitoring should be applied instead of conventional time-based preventive maintenance. It is also proposed by reliability analysis that replacement time of dropper can be reduced from 18 years to 10 years. These results show that the proposed RCM approach can optimize the maintenance procedures of catenary system.

Progressive Failure of a Rock Slope by the Subcritical Crack Growth of Asperities Along Joints (절리면의 응력확대계수가 파괴인성보다 작은 암반사면의 진행성 파괴)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.95-106
    • /
    • 2009
  • Numerical analysis of the progressive failure of a rock slope was conducted using a 3-D rock joint element considering fracture mechanics and subcritical crack growth of asperities in the rock joints. Even though the stress state in the rock slope is not changing, the elapse of time causes subcritical crack growth to break asperities in the joints. The increase of broken asperities causes failure of joints in the rock slope and the increase of failed joints results in failure of a jointed rock slope. As a result, the progressive failure of a jointed rock slope due to the gradual breaking of small asperities along joints generated by subcritical crack growth occurs at a lower stress than if rock failure occurred by exceeding the static strength or fracture toughness.

Discovery of and Recovery from Failure in a Costal Marine USN Service

  • Ceong, Hee-Taek;Kim, Hae-Jin;Park, Jeong-Seon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • In a marine ubiquitous sensor network (USN) system using expensive sensors in the harsh ocean environment, it is very important to discover failures and devise recovery techniques to deal with such failures. Therefore, in order to perform failure modeling, this study analyzes the USN-based real-time water quality monitoring service of the Gaduri Aqua Farms at Songdo Island of Yeosu, South Korea and devises methods of discovery and recovery of failure by classifying the types of failure into system element failure, communication failure, and data failure. In particular, to solve problems from the perspective of data, this study defines data integrity and data consistency for use in identifying data failure. This study, by identifying the exact type of failure through analysis of the cause of failure, proposes criteria for performing relevant recovery. In addition, the experiments have been made to suggest the duration as to how long the data should be stored in the gateway when such a data failure occurs.

The Property of Software Optimal Release Time Based on Log Poission Execution Time Model Using Interval Failure Times (고장 간격 수명 시간을 이용한 로그 포아송 실행 시간 모형의 소프트웨어 최적방출시간 특성에 관한 연구)

  • Sin, Hyun-Cheul;Kim, Hee-Cheul
    • Convergence Security Journal
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • It is of great practical interest to deciding when to stop testing a software system in development phase and transfer it to the user. This decision problem called an optimal release policies. In this paper, because of the possibility of introducing new faults when correcting or modifying the software, we were researched release comparative policies which based on infinite failure NHPP model and types of interval failure times. The policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement can optimal software release times. In a numerical example, applied data which were patterns, if intensity function constant or increasing, decreasing, estimated software optimal release time.

Considerable Parameters and Progressive Failure of Rock Masses due to the Tunnel Excavation (터널 굴착시 고려해야 할 주변앙반의 매개변수와 진행성 파괴)

  • 임수빈;이성민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.231-234
    • /
    • 1994
  • Concentrated stresses due to the tunnel excavation easily cause failure around opening in the soft rock mass layer. Thus, while excavatng tunnel in the soft rock mass layerm it is very important to predict the possibility of failure or yielding zones around tunnel boundary. There are two typical methods to predict these; 1) the analysis of field monioring data and 2) numerical analysis. In this study, it was attempted to describe the time-dependent or progressive rock mass manner due to the continuous failure and fracturing caused by surrounding underground openings using the second method. In order to apply the effects of progressive failure underground, an iterative technique was used with the Hoek and Brown rock mass failure theory. By developing and simulating, three different shapes of twin tunnels, this research simulated and estimated the proper size of critical pillar width between tunnels, distributed stresses on the tunnel sides, and convergences of tunnel crowns. Moreover, results out progressive failure technique based on the Hoek and Brown theory were compared with the results out of Mohr-Coulomb theory.

  • PDF

Reliability-Based Optimum Design for Tubular Frame Structures (골조 파이프 구조물의 최적신뢰성 설계)

  • 백점기
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.95-105
    • /
    • 1988
  • This paper describes the development of a reliability-based optimum design technique for such three dimensional tubular frames as off shore structures. The objective function is formulated for the structural weight. Constraints that probability of failure for the critical sections does not exceed the allowable probability of failure are set up. In the evaluation of the probability of failure, fatigue as well as buckling and plasticity failure are taken into account and the mean-value first-order second-moment method(MVFOSM) is applied for its calculation. In order to reduce the computing time required for the repeated structural analysis in the optimization process, reanalysis method is also applied. Application to two and three dimensional simple frame structures is performed. The influence of material properties, external forces, allowable failure probabilities and interaction between external forces on the optimum design is investigated.

  • PDF

Accelerated Life Test and Data Analysis of the Silver Through Hole Printed Wiring Board (가속수명시험을 이용한 은도통홀 인쇄회로기판의 신뢰성연구)

  • 전영호;권이장
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.2
    • /
    • pp.15-27
    • /
    • 1997
  • This paper describes a highly accelerated life test (HALT, USPCBT) method for rapid qualification testing of STH PWB(Silver Through Hole Printed Wiring Boards). This method was carried out to be an alternative to the present time-consuming standard 1344 hours life testing(THB). The accelerated life test conditions were $121^{\circ}C$/95%R.H. at 50V bias and without bias. Their results are compared with those observed in the standard 1344 hours life test at $40^{\circ}C$/95%R.H. at 50V bias and without bias. The studies were focused on the samples time-to-failure as well as the associated conduction and failure mechanisms. The abrupt drop of insulation resistance is due to the absorption of water vapour. And the continuous drop of insulation resistance is due to the Ag migration. The ratios of time-to-failure of HALT(USPCBT) to THB were 25 and 11 at 50V bias and without bias respectively.

  • PDF