• Title/Summary/Keyword: time to cracking

Search Result 464, Processing Time 0.025 seconds

Numerical Simulation of Failure Mechanism of Space Frame Structure by Nonlinear Dynamic Analysis (비선형 동적해석을 통한 입체라멘 교각의 파괴 메카니즘 모사)

  • 김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.348-355
    • /
    • 2000
  • The characteristics on non linear behavior and the failure mechanism of RC space frame structure serving railway under seismic action have been investigated by numerical analysis in time domain. The structure concerned is modeled in 3 dimensional extent and RC frame elements with fibers are employed. Fibers are characterized as RC one and PL one to distinguish different energy release after cracking. Due to deviation of mass center and stiffness center of entire structure the complex behavior under seismic action is shown. The excessive shear force is concentrated on the pier beside flexible one relatively, which leads to failure of bridge concerned.

  • PDF

The Roles of Seeds on Preparation the Silica Glass by Sol-Gel Process (졸-겔법에 의한 실리카 유리의 제조에 있어서 Seed첨가의 역할)

  • 이경희;이병하;오부근;안광훈;김종옥
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.677-681
    • /
    • 1989
  • On the preparation of silica glass by sol-gel process, we used fine powder of silica gel to prevent cracking. In this case, the best condition of silica glass preparation is the contents of 10~40wt% seed and the gelation time of solution in contract. The dried gels conversed to silica glass by heat treatment up to 125$0^{\circ}C$.

  • PDF

A tension stiffening model for analysis of RC flexural members under service load

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.29-51
    • /
    • 2016
  • Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service load. The proposed model has been embedded in a typical cracked span length beam element. The element is visualized to consist of at the most five zones (cracked or uncracked). Closed form expressions for flexibility and stiffness coefficients and end displacements have been obtained for the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical procedure has been developed for nonlinear analysis of RC flexural members using the proposed tension-stiffening model. The procedure yields deflections as well as redistributed bending moments. The proposed model (and developed procedure) has been validated by the comparison with experimental results reported elsewhere and also by comparison with the Finite Element Method (FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC structures.

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.

Thermo-mechanical behavior of prestressed concrete box girder at hydration age

  • Zhang, Gang;Zhu, Meichun;He, Shuanhai;Hou, Wei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • Excessively elevated temperature can lead to cracks in prestressed concrete (PC) continuous bridge with box girder on the pier top at cement hydration age. This paper presents a case study for evaluating the behavior of PC box girder during the early hydration age using a two-stage computational model, in the form of computer program ANSYS, namely, 3-D temperature evaluation and determination of mechanical response in PC box girders. A numerical model considering time-dependent wind speed and ambient temperature in ANSYS for tracing the thermal and mechanical response of box girder is developed. The predicted results were compared to show good agreement with the measured data from the PC box girder of the Zhaoshi Bridge in China. Then, based on the validated numerical model three parameters were incorporated to analyze the evolution of the temperature and stress within box girder caused by cement hydration heat. The results of case study indicate that the wind speed can change the degradation history of temperature and stress and reduce peak value of them. The initial casting temperature of concrete is the most significant parameter which controls cracking of PC box girder on pier top at cement hydration age. Increasing the curing temperature is detrimental to prevent cracking.

Modeling of stress corrosion crack growth and lifetime of pipe grade high density polyethylene by using crack layer theory (Crack Layer 이론을 이용한 배관용 고밀도 폴리에틸렌의 응력부식균열 진전 및 수명 예측 모델)

  • Wee, Jung-Wook;Choi, Byoung-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • In many cases, the field fracture mechanism of the thermoplastic pipe is considered as either brittle or environmental fractures. Thus the estimation of the lifetime by modeling slow crack growth considering such fracture mechanisms is required. In comparison of the some conventional and empirical equations to explain the slow crack growth rate such as the Paris' law, the crack layer theory can be used to simulate the crack and process zone growth behaviors precisely, so the lifetime of thermoplastic pipe can also be accurately estimated. In this study, the modified crack layer theory for the stress corrosion cracking (SCC) of high density polyethylene is introduced with detailed algorithm. The oxidation induction time of the HDPE is also considered for the reduction of specific fracture energy during exposed to chemical environments. Furthermore, the parametric study for an important SCC parameter is conducted to understand the slow crack growth behavior of SCC.

Atmospheric Corrosion of 7B04 Aluminum Alloy in Marine Environments

  • Zhang, Xiaoyun;Liu, Ming;Lu, Feng;Liu, Minghui;Sun, Zhihua;Tang, Zhihui
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • Outdoor exposure tests using of 7B04 aluminium alloy samples including plate, tensile and various SCC samples were carried out in Tuandao station, Shandong province (East of China) and Wanning station, Hainan province (South of China). Corrosion characteristics including weight loss, microstructure, tensile strength and SCC susceptibility were investigated. The corrosion rates in Tuandao and Wanning showed high to low and the corrosion rates changed to the following equation of $w=at^b$ (b<1). The corrosion of 7B04 aluminium alloy in Wanning was more serious than that in Tuandao. Pitting appeared at early stage of expose test, and it can be changed to general corrosion with test time extension. The 7B04 aluminium alloy of which specimen shapes are forging and thick plate also showed SCC (Stress corrosion cracking) in the marine atmosphere. The higher SCC sensitivity was observed in Wanning station than in Tuandao station. The 7B04 aluminium alloy with a high stress level was more sensitive to SCC. Intergranular and transgranular or a mixed mode of cracking can be observed in different marine exposure.

바이오매스 구성성분 중 리그닌의 전환에 관한 연구

  • Yun, Seong-Uk;Lee, Byeong-Hak
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.733-736
    • /
    • 2000
  • Lignin is usable as fuels and heavy oil additives if depolymerized to monomer unit, because the chemical structures are similar to high octane materials found in gasoline. In this study, the solvent-phase thermal cracking(solvolysis) of lignin was performed at the various temperature and time in a laboratory tubular reactor. Conversion yield was measured for the properties of thermal cracking and liquefaction reaction of lignin. Highest conversion yield when acetone was used as thermal cracking solvent was 55.5% at $350^{\circ}C$, 50minutes and highest tar generation were $260{\sim}350mg/g\;{\cdot}\;lignin$ at $250^{\circ}C$, and highest conversion yield after tar removal was 76.88% at $300^{\circ}C$, 30minutes. Conversion yield, product compositions and amounts were determined by tar degradation yield.

  • PDF

Time-dependent stresses and curvatures in cracked R.C. sections under working loads

  • Al-Zaid, Rajeh Z.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.363-376
    • /
    • 2004
  • The present study provides a relatively simple and accurate analytical model for the prediction of time-dependent stresses and curvatures of cracked R.C. sections under working loads. A more simplified solution is also provided. The proposed models are demonstrated by considering a numerical example and conducting a parametric study on the effects of relevant R.C. design parameters. In contrary to tension reinforcement, the compression reinforcement is found to contribute significantly in reducing tensile stresses in tension steel and in reducing the total section curvatures. The good accuracy of the proposed approximate solution opens a new vision towards a simple yet accurate model for the prediction of time-dependent effects in R.C. structures.

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.