• 제목/요약/키워드: time series analysis EGARCH

검색결과 5건 처리시간 0.019초

Comparison of forecasting performance of time series models for the wholesale price of dried red peppers: focused on ARX and EGARCH

  • Lee, Hyungyoug;Hong, Seungjee;Yeo, Minsu
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.859-870
    • /
    • 2018
  • Dried red peppers are a staple agricultural product used in Korean cuisine and as such, are an important aspect of agricultural producers' income. Correctly forecasting both their supply and demand situations and price is very important in terms of the producers' income and consumer price stability. The primary objective of this study was to compare the performance of time series forecasting models for dried red peppers in Korea. In this study, three models (an autoregressive model with exogenous variables [ARX], AR-exponential generalized autoregressive conditional heteroscedasticity [EGARCH], and ARX-EGARCH) are presented for forecasting the wholesale price of dried red peppers. As a result of the analysis, it was shown that the ARX model and ARX-EGARCH model, each of which adopt both the rolling window and the adding approach and use the agricultural cooperatives price as the exogenous variable, showed a better forecasting performance compared to the autoregressive model (AR)-EGARCH model. Based on the estimation methods and results, there was no significant difference in the accuracy of the estimation between the rolling window and adding approach. In the case of dried red peppers, there is limitation in building the price forecasting models with a market-structured approach. In this regard, estimating a forecasting model using only price data and identifying the forecast performance can be expected to complement the current pricing forecast model which relies on market shipments.

제철원료 운송시장의 변동성 전이 분석에 대한 연구 (A Study on the Volatility Transition of Steel Raw Material Transport Market)

  • 황요평;오예은;박근식
    • 무역학회지
    • /
    • 제47권4호
    • /
    • pp.215-231
    • /
    • 2022
  • Analysis and forecasting of the Baltic Capsize Index (BCI) is important for managing an entity's losses and risks from the uncertainty and volatility of the fast-changing maritime transport market in the future. This study conducted volatility transition analysis through the GARCH model, using BCI which is highly related to steel raw materials. As for the data, 2,385 monthly data were used from March 1999 to March 2021. In this study, after basic statistical analysis, unit root and cointegration test, the GARCH, EGARCH, and DCC-GARCH models were used for volatility transition analysis. As the results of GARCH and EGARCH model, we confirmed that all variables had no autocorrelation between the standardized residuals for error terms and the square of residuals, that the variability of all variables at this time was likely to persist in the future, and that the variability of the time-series error term impact according to Iron ore trade (IoT). In addition, through the EGARCH model, the magnitude convenience of all variables except the Iron ore price (IOP) and Capesize bulk fleet (BCF) variables was greater than the positive value (+). As a result of analyzing the DCC-GARCH (1,1) model, partial linear combinations were confirmed over the entire period. Estimating the effect of variability transition on BCF and C5 with statistically significant linear combinations with BCI confirmed that the impact of BCF on BCI was greater than the impact of BCI itself.

예측력 비교를 통한 지역별 최적 변동성 모형 연구 (Application of Volatility Models in Region-specific House Price Forecasting)

  • 장용진;홍민구
    • 부동산연구
    • /
    • 제27권3호
    • /
    • pp.41-50
    • /
    • 2017
  • 변동성 모형을 이용한 국내의 주택가격에 대한 기존의 연구에서는 변동성모형을 어떻게 주택시장분석에 적용할 수 있는지를 보여주고 있지만 최근 국내의 지역주택시장들에 나타나는 유의미한 변화를 반영하는데는 한계가 존재할 수 밖에 없다. 본 연구에서는 변동성모형을 적용하여 전국의 각 지역별 주택시장을 분석하고 이를 통해 미래의 지역별 주택시장의 가격변동을 실제적으로 예측하였다. AR(1)-ARCH(1), AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1,1) 모형을 통하여 지역주택시장에 ARCH 및 GARCH효과가 존재하는 것을 확인하였다. 그리고 각 지역의 예측력을 비교하여 지역별 최적예측모형을 선정하였으며, 이러한 지역별 최적모형의 선정이 실제적으로 어떻게 이용될 수 있는지를 보여주기 위하여 2017년 하반기의 각 지역주택시장의 가격변동을 선정된 지역별 최적모형을 이용하여 예측하였다.

Reassessment of Volatility Transmission Among South Asian Equity Markets

  • AZIZ, Tariq;MARWAT, Jahanzeb;MUSTAFA, Sheraz;KUMAR, Vikesh;AL-HADDAD, Lara
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.587-597
    • /
    • 2021
  • This study investigates the nexus among the South Asian economies. Effects of shocks in the equity market of one country on the equity market of the other country are examined. For empirical analysis, the time series monthly data is used for the period from February 2013 to August 2019. The study focuses on the four larger economies of the region, namely, India, Bangladesh, Pakistan, and Sri Lanka. To investigate for asymmetric effects of positive and negative shocks, EGARCH model is used. The findings show the mix nature of the spillovers between the various pairs of countries. The equity market of Pakistan has two-way spillover effects with the equity market of Bangladesh, but has no association with the equity markets of India and Sri Lanka. The volatility in the equity market of India significantly influences the volatility of the financial markets of Bangladesh and Sri Lanka. Similarly, the capital market of Sri Lanka has a negative association with the equity market of India as well as Bangladesh, but does not affect the equity market of any other country. These findings validate the argument in the literature that geographic location influences the nexus among equity markets. The findings are important for policy-makers and investors.

KOSPI지수와 원-달러 환율의 변동성의 비대칭성에 대한 실증연구 (Empirical Analyses of Asymmetric Conditional Heteroscedasticities for the KOSPI and Korean Won-US Dollar Exchange Rate)

  • 맹혜영;신동완
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1033-1043
    • /
    • 2011
  • 본 논문에서는 KOSPI지수와 원-달러 환율의 로그수익률을 사용하여 비대칭 이분산성에 대해 연구한다. 커널 density plot과 상승기와 하강기의 평균, 분산을 검토하여 이들 시계열의 변동의 비대칭성에 대한 윤곽을 파악하고 GARCH군의 여러 비대칭 모형을 적합하여 비대칭성을 실증적으로 파악한다. 또한 최종선택 모형인 EGARCH 모형을 바탕으로 부트스트래핑을 사용하여 미래 시점의 변동성인 조건부 분산의 기대치를 예측하고 예측표준오차를 구해본다.