• Title/Summary/Keyword: time reversal method

Search Result 93, Processing Time 0.03 seconds

Comparison of Time-Domain Imaging Algorithms for Ultra-Wideband Radar with One-Dimensional Synthetic Aperture (1차원 합성 개구면을 가진 초광대역 레이더의 시영역 기반 영상화 기법 비교)

  • Kim, Dae-Man;Hong, Jin-Young;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1175-1184
    • /
    • 2008
  • Delay-sum back projection(DSBP) algorithm and the time reversal algorithm based on the finite-difference time-domain method are compared. The two algorithms, which operate in the time domain, can process the ultra-wideband (UWB) radar data to generate images that are close to the original location and shape of the target. For the experiment, the UWB radar consists of a network analyzer, a resistive V dipole antenna, a scanner, and a control computer. The radar aperture is synthesized by linearly scanning the antenna. A calibration procedure is applied to the measured data to remove signal distortion and clutter. The two algorithms are applied to the same data on the same platform. It is shown that the DSBP algorithm produces better images but takes longer time to produce the images than the FDTD-TR algorithm.

Comparative evaluation of photobiomodulation therapy at 660 and 810 nm wavelengths on the soft tissue local anesthesia reversal in pediatric dentistry: an in-vivo study

  • Ankita Annu;Sujatha Paranna;Anil T. Patil;Sandhyarani B.;Adhithi Prakash;Renuka Rajesh Bhurke
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.4
    • /
    • pp.229-236
    • /
    • 2023
  • Background: Local anesthesia has been reliably used to control pain during dental procedures and is important in pediatric dentistry. However, children occasionally complain of prolonged numbness after dental treatment, leading to several problems. Studies conducted to reverse the effect of local anesthesia using phentolamine mesylate and photobiomodulation therapy (PBM) are encouraging but limited. PBM is a type of light therapy that utilizes visible and near-infrared non-ionizing electromagnetic spectral light sources. Hence, this study used this modality to compare the reversal of local anesthesia at two different wavelengths. This study compared the effect of PBM at 660 and 810 nm wavelengths on the reversal of soft tissue local anesthesia using a diode LASER in pediatric dentistry. Method: Informed consent and assent were obtained, and the participants were then divided randomly into three groups of 20 children each: control group-without LASER irradiation, LASER irradiation at 660 nm, and LASER irradiation at 810 nm. Sixty children aged 4-8 years with deciduous mandibular molars indicated for pulp therapy were administered an inferior alveolar nerve block. After 45 min of injection, a duration that was similar to the approximate duration of treatment, they were exposed to 660- and 810-nm LASER irradiation according to their groups until reversal of local anesthesia was achieved. The control group did not undergo LASER irradiation. The reversal of the soft tissue local anesthetic effect was evaluated using palpation and pin prick tests every 15 min, and the LASER irradiation cycle continued until reversal of the soft tissue local anesthesia was achieved. Results: A significant reduction of 55.5 min (27.6%) in the mean soft tissue local anesthesia reversal time was observed after the application of 810 nm wavelength PBM and 69 min (34.7%) after 660 nm wavelength LASER irradiation. Conclusion: PBM with a 660 nm wavelength was more effective in reducing the mean soft tissue local anesthesia reversal duration, and thus can be used as a reversal agent for soft tissue local anesthesia in pediatric dentistry.

Characteristics Analysis of Flux-Reversal Machine considering BEMF Current (역기전력 전류를 고려한 자속 역전식 기기의 특성 해석)

  • Kim Tae Heoung;Lee Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.709-717
    • /
    • 2004
  • Flux-reversal machine (FRM) is a new brushless doubly salient permanent magnet machine. Its operation is similar to that of the brushless DC motor, so it can be driven by 120 degree square wave voltage and use PWM pulse patterns in two-phase feeding scheme to control the speed. In this driving method, the back electromotive force (BEMF) current in the open phase is generated by the BEMF. It can be appeared or disappeared according to the changes of the neutral voltage of the machine. In this paper, the time-stepped voltage source finite-element method taking BEMF current into account is proposed. Its influences on the performances of the FRM are also investigated. To prove the propriety of the proposed analysis method, a Digital Signal Processor (DSP) installed experimental devices are equipped and the experiment is performed.

How to make spatially focused sound shape: wavenumber spectrum matching (공간 상에 원하는 음장형상을 만드는 방법)

  • Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1014-1017
    • /
    • 2007
  • Sound focusing technologies has been studied for various purposes from early 1990s. As a result, these technologies make us possible to apply in many uses. For example, we can treat tumors using focused ultrasonic waves without surgical knife and communicate in the ocean using time reversal array. Also applications for personal audio system become issues. Recently, as technologies are developing, in some applications, needs for regional focusing become increasing because previously suggested focusing methods, such as phase conjugation, time reversal and inverse filtering, were all about a point focusing. Therefore, studies on regional focusing method are essentially needed. Regional focusing method was firstly mentioned by Choi and Kim in 2002: acoustic contrast control. However, in regional focusing, physical interpretations between control variables and results are still not easy because of its complexity. In this regard, we tried to understand the relations between control variables and results in wavenumber domain and suggested a solution method for regional focusing: wavenumber spectrum matching. We also showed how to make spatially focused sound shape using the suggested method from the simplest case: line focusing.

  • PDF

Determination of Impact Source Location Using a Single Transducer and Time Reversal Technique (단일센서와 시간역전법을 이용한 판에서의 충격위치 결정에 관한 연구)

  • Jeong, Hyun-Jo;Cho, Sung-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a plate structure is presented in this paper. The method employs a single sensor and spatial focusing of time reversal (TR) acoustics. We first examine the TR focusing effect at the impact position and its surroundings through simulation and experiment. The imaging results of impact points show that the impact source location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testings of plate-like structures.

Performance improvement of underwater acoustic communication using ray-based blind deconvolution in passive time reversal mirror (수동형 시역전 기반의 음선 기반 블라인드 디컨볼루션 기법을 이용한 수중음향통신 성능 개선)

  • Oh, Se Hyun;Byun, Gi Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.375-382
    • /
    • 2016
  • This paper presents the results for the performance improvement of underwater communication in a passive time reversal mirror (PTRM) using ray-based blind deconvolution (RBD). In conventional PTRM, the signal to be recovered is found from matched-filtering the received probe signal. However, the communication performance is degraded because the time-varying impulse response for each data frame is not reflected in the received probe signal. In this study, the time-variant transfer function is estimated from each received data frame using RBD, and the estimated time-variant transfer function is then used to recover the data signal using PTRM. The results from the experimental data show that the suggested method improves the communication performance when comparing with the conventional PTRM.

Electrical properties of the PLZT thin film capacitors by the sol-gel method (Sol-gel법을 이용한 PLZT박막 커패시터의 전기적 특성)

  • 박준열;정장호;이성갑;이영희
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.668-673
    • /
    • 1996
  • In this paper, (P $b_{1-x}$ L $a_{x}$)(Z $r_{0.52}$ $Ti_{0.48}$) $O_{3}$ (X=0-13[at%]) thin film were prepared by the Sol-Gel method, Multiple PLZT thin films were spin-coated on the Pt/Ti/ $SiO_{2}$Si substrate. The electrical properties of the films were investigated for varying the annealing temperature. In the PLZT(11/52/48) specimens, the dielectric ocnstant of 1236 and the polarization reversal time of 460[nm] were obtained and the breakdown of the film did not occur up to 1*10$^{10}$ cycles at the voltage of 7[V] by the bipolar acceleration. The remanent polarization and coercive field decreased with increasing the content of La in the range of 0-13[at%] and thin film of the PLZT(11/52/48) showed the value of 2.56[.mu.C/c $m^{2}$] and 21.1[kV/cm], respectively.ly.y.

  • PDF

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.

Debonding monitoring of CFRP strengthened RC beams using active sensing and infrared imaging

  • Sohn, Hoon;Kim, Seung Dae;In, Chi Won;Cronin, Kelly E.;Harries, Kent
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.391-406
    • /
    • 2008
  • This study attempts to develop a real-time debonding monitoring system for carbon fiber-reinforced polymer (CFRP) strengthened structures by continuously inspecting the bonding condition between the CFRP layer and the host structure. The uniqueness of this study is in developing a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected without relying on previously-obtained baseline data. The proposed reference-free damage diagnosis is achieved based on the concept of time reversal acoustics (TRA). In TRA, an input signal at an excitation point can be reconstructed if the response signal measured at another point is reemitted to the original excitation point after being reversed in the time domain. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring a baseline signal representing the undamaged state for comparison. The concept of TRA has been extended to guided wave propagations within the CFRP-strengthened reinforced concrete (RC) beams to improve the detectibility of local debonding. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system. Comparisons with an electro-mechanical impedance method and an inferred imaging technique are provided as well.