최근 인공지능 스피커 시장이 성장하면서 사용자와 자연스러운 대화가 가능한 음성합성 기술에 대한 수요가 증가하고 있다. 따라서 다양한 음색의 목소리를 생성할 수 있는 다화자 음성합성 시스템이 필요하다. 자연스러운 음성을 합성하기 위해서는 대용량의 고품질 음성 DB로 학습하는 것이 요구된다. 그러나 많은 화자가 발화한 고품질의 대용량 음성 DB를 수집하는 것은 녹음 시간과 비용 측면에서 매우 어려운 일이다. 따라서 각 화자별로는 소량의 학습 데이터이지만 매우 많은 화자의 음성 DB를 사용하여 음성합성 시스템을 학습하고, 이로부터 다화자의 음색과 운율 등을 자연스럽게 표현하는 기술이 필요하다. 본 논문에서는 화자인식 기술에서 사용하는 딥러닝 기반 x-vector 기법을 적용하여 화자 인코더를 구성하고, 화자 인코더를 통해 소량의 데이터로 새로운 화자의 음색을 합성하는 기술을 제안한다. 다화자 음성합성 시스템에서 텍스트 입력에서 멜-스펙트로그램을 합성하는 모듈은 Tacotron2로, 합성음을 생성하는 보코더는 로지스틱 혼합 분포가 적용된 WaveNet으로 구성되어 있다. 학습된 화자 임베딩 신경망에서 추출한 x-vector를 Tacotron2에 입력으로 추가하여 원하는 화자의 음색을 표현한다.
본 연구에서는, 코로나 바이러스 팬데믹을 포함하여, 오늘의 교회와 그리스도인들이 마주한 다양한 위기와 도전들에 직면하여 대안적 형태의 교리교육을 모색한다. 그동안 한국교회의 현장에서 이루어져 온 교리교육은, 최근 교리교육에 대한 관심에서도 드러나듯이, 수직적 차원의 신앙에 초점을 두고, 좁은 의미의 교회 중심적 그리스도인 만들기에 많은 노력을 기울여 왔다. 한국교회의 대사회적 신뢰도와 공공성의 상실은 일차적으로 이러한 지역 교회에 헌신하는, 좁은 의미의 혹은 사사화된 제자훈련으로서의 교리교육과 깊이 연관되어 있다고 할 수 있다. 교리교육 방법에 있어서도 교사가 일방적으로 교리 내용을 학습자에게 전수하거나, 학습자들이 그 내용을 반복하고 암송하는 방법이 흔하게 사용되어 왔다. 그 결과 기독교교육의 원형이라고 할 수 있는 교리교육은 기독교교육학 가운데 가장 고루하고 뒤떨어진 영역으로 간주되고 있다. 이를 염두에 두고 본 연구에서는 오늘의 교리교육의 현황에 대한 비판적 평가와, 교리에 대한 새로운 관점들, 교리교육에 대한 기독교 교육학자들의 이론에 기초하여 통전적 신앙의 형성을 지향하는 교리교육을 목적, 교리개념, 체제, 내용, 방법론과 방법 등으로 나누어서 제안한다. 그리고 이를 통하여 기존 교리교육의 재개념화를 시도한다.
이 연구의 목적은 VR/AR을 활용한 창의교육 프로그램이 학생들의 창의적 문제해결력과 수업만족도에 어떠한 영향을 미치는지를 알아보고자 하였다. 이를 위하여 충북지역 소재 J 고등학교 1학년 7개 학급, 총 179명을 이 연구의 대상으로 하였다. 창의적 문제해결력 검사지의 사전·사후 설문 검사 값을 두 대응표본 t검정(two-dependent sample, t-test)을 실시하여 자료를 분석하였으며, 수업만족도의 값은 기술통계량 및 인터뷰를 실시하여 결과를 분석 및 해석하였다. 이 연구의 결과는 다음과 같다. 첫째, 실행을 제외한 문제발견 및 분석, 아이디어 생성, 실행계획, 설득과 소통 및 혁신 성향에서는 통계적으로 유의미한 결과 값을 나타내었다. 둘째, 수업만족도에서는 평균 3.75로, 정규 수업시간에 학습자들이 주어진 시간 내에 창의적 아이디어와 산출물 및 모둠을 통한 결과물을 이끌어내기에 어려움이 있었으나, 대체적으로 긍정적인 반응을 나타내었다. 이는 융합인재교육(STEAM)과 같이, AR/VR 활용 창의교육 프로그램이 학생들의 문제해결을 위해 아이디어를 생성하거나 확장시키는 과정에서 학생들의 학습동기 및 흥미를 증가시킨 것으로 확인되었다.
The purpose of this study was to investigate the current status of interprofessional education (IPE) and the efforts required to promote, popularize, and implement it in Korea. The IPE status of 40 medical colleges was investigated using a survey with questions regarding the details of IPE, the future plans and necessary support required, and the reasons for not implementing IPE. Thirty-two medical colleges responded, of which 10 are implementing or have implemented IPE. Most of these colleges started IPE in 2018, and the duration of IPE was less than 9 hours. All medical colleges held classes with nursing students. As for the type of IPE, there were independent courses for IPE, one-time special lectures, or partial sessions in one course. Lectures, discussions and presentations, role playing, and high-fidelity simulations were mainly used as educational methods. The support and interest of the dean was the most important facilitating factor. No medical colleges were currently preparing to implement IPE, four colleges had planned IPE but failed to implement it, and 16 had no plans for IPE at all. All medical colleges cited scheduling or cooperation with other majors as the most significant barrier. All the colleges listed their requirements for educational materials, cases, guidelines, and teaching and learning methods for IPE from external institutions. To activate IPE, it is necessary to create an appropriate atmosphere and conditions for developing IPE competencies and a model suitable for the domestic situation. External medical education support organizations should distribute IPE development guidelines and educational materials, form a network between medical colleges with IPE experience, and make efforts to promote the importance of IPE.
4차 산업혁명의 초연결사회에서 악성코드 공격은 더욱 기승을 부리고 있다. 이러한 악성코드 대응을 위해 인공지능기술을 이용한 악성코드 탐지 자동화는 새로운 대안으로 주목받고 있다. 그러나, 인공지능의 신뢰성에 대한 담보없이 인공지능을 활용하는 것은 더 큰 위험과 부작용을 초래한다. EU와 미국 등은 인공지능의 신뢰성 확보방안을 강구하고 있으며, 2021년 정부에서는 신뢰할 수 있는 인공지능 실현 전략을 발표했다. 정부의 인공지능 신뢰성에는 안전과 설명가능, 투명, 견고, 공정의 5가지 속성이 있다. 우리는 악성코드 탐지 모델에 견고를 제외한 안전과, 설명가능, 투명, 공정의 4가지 요소를 구현하였다. 특히 외부 기관의 검증을 통해 모델 정확도인 일반화 성능의 안정성을 입증하였고 투명을 포함한 설명가능에 중점을 두어 개발하였다. 변화무쌍한 데이터에 의해 학습이 결정되는 인공지능 모델은 생명주기 관리가 필요하다. 이에 인공지능 모델을 구성하는 데이터와 개발, 서비스 운영을 통합하는 MLOps 프레임워크에 대한 수요가 늘고 있다. EXE 실행형 악성코드와 문서형 악성코드 대응 서비스는 서비스 운영과 동시에 데이터 수집원이 되고, 외부 API를 통해 라벨링과 정제를 위한 정보를 가져오는 데이터 파이프라인과 연계하도록 구성하였다. 클라우드 SaaS 방식과 표준 API를 사용하여 다른 보안 서비스 연계나 인프라 확장을 용이하게 하였다.
해양사고 예방을 위해서는 사고의 원인과 결과에 대한 분석 및 진단뿐만 아니라, 사고의 발생 패턴과 변화 추이를 예측함으로써 정량적 위험도를 제시할 필요성이 있다. 선박교통과 관련된 해양사고 예측은 선박의 충돌위험도 분석 및 항해 경로 탐색 등 선박교통의 흐름에 관한 연구가 주로 수행되었으며, 해양사고의 발생 패턴에 대한 분석은 전통적인 통계 분석에 따라 제시되었다. 본 연구에서는 해양사고 통계 자료 중 선박교통관련 사고의 월별, 시간대별 발생 현황 데이터를 활용하여 해양사고 발생 예측 모델을 제시하고자 한다. 국내 해양사고 발생 현황 중 월별, 시간대별 데이터 집계가 가능한 1998년부터 2021년까지의 통계자료 중 선박교통 관련 데이터를 분류하여 정형 시계열 데이터로 변환하였으며, 대표적인 인공지능 모델인 순환 신경망 기반 장단기 기억 신경망을 통하여 예측 모델을 구축하였다. 검증데이터를 통하여 모델의 성능을 검증한 결과 RMSE는 초기 신경망 모델에서 월별 52.5471, 시간대별 126.5893으로 나타났으며, 관측값으로 신경망 모델을 업데이트한 결과 RMSE는 월별 31.3680, 시간대별 36.3967로 개선되었다. 본 연구에서 제안한 신경망 모델을 기반으로 다양한 해양사고의 특징 데이터를 학습하여 해양사고 발생 패턴을 예측할 수 있을 것이다. 향후 해양사고 발생 위험의 정량적 제시와 지역기반의 위험지도 개발 등에 관한 추가 연구가 필요하다.
Centella asiatica (C. asiatica) has been widely used in food, cosmetics, and pharmaceutical industry as a functional material. In a previous study, we have investigated not only pharmacological effects such as antioxidative and anti-inflammatory effects, but also analyzed various functional ingredients. In this study, triterpenoids were analyzed using HPLC-DAD to determine marker compounds among functional ingredients. When triterpenoids were analyzed, asiaticoside from C. asiatica was determined as an optimal marker compound. Next, specificity, linearity, limited of detection (LOD), limited of quantification (LOQ), precision, accuracy, and range were evaluated using HPLC-DAD to determine asiaticoside contents in C. asiatica juice and extracts. The specificity was elucidated by chromatogram and retention time using an established analytical method. The coefficient of correlation obtained was 0.9996. LOD was 4.99 ㎍/mL and LOQ was 15.12 ㎍/mL. Intra- and inter-day precision of asiaticoside were determined to be 0.48~1.68% and 0.08~1.09%, respectively. Furthermore, the recovery rate of asiaticoside was 98.88% and the analytical range of Field-70E was determined to be 0.625~10 mg/mL. As a results of evaluating ABTS, DPPH, and FRAP antioxidative effect, Field-70E showed potent antioxidant activities. Results of this study could be used as basic data for quality standardization of C. astiatica juice and extracts.
제4차 산업혁명, 포스트 코로나 시대로의 전환 등 사회적 혁신을 기반으로 모두를 위한 삶의 질을 제고할 수 있는 교육 패러다임의 전환이 필요한 시기이다. 이러한 시대 변화의 흐름을 파악하여 교육과정의 변화를 준비하여야 한다. 이에 본 연구는 4차 산업혁명, 포스트 코로나 시대로의 패러다임의 변화에 따른 미래 초·중등교육의 방향성이 논의되고 있는 시점에서, '미래교육환경의 변화에 따라 의생활교육은 어떤 혁신적 과제를 수행해야 하는가?'의 문제의식에서 출발하여 미래 교육환경의 변화의 특징과 의생활교육과정을 분석해보고, 이를 바탕으로 의생활교육과정의 방향을 탐색하는데 목적을 두었다. 이러한 연구목적을 수행하기 위해 제1차 교육과정에서부터 2015 개정 교육과정의 의생활교육과정 분석결과를 활용하였다. 결론적으로 미래 교육환경의 변화에 따른 의생활교육과정의 방향으로는 먼저 인재상으로 인공지능(AI)에 인간의 감성과 환경, 의생활문화를 더하는 융·복합교육인재양성, 소프트웨어 역량과 실천적 문제해결 역량을 연계하는 의생활교육, 인공지능(AI)을 활용한 패션 메이커교육과 가치 지향적인 의생활교육 등을 도출하였다. 본 연구를 통해 실제적 교육현장 적용인 의생활 교수·학습방법에 대한 후속연구가 진행되기를 기대한다.
본 연구에서는 실생활과 밀접한 학문인 의생활 분야에서의 환경보호에 대한 동기를 이끌어내기 위해 온라인 환경에서 성인 학습자 중심으로 버려진 우산의 천을 업사이클링하여 드링크백을 제작하는 온라인 실습 수업안을 체계적으로 개발함으로써 환경의식을 개선하고자 하였다. 본 연구는 교수학습개발 모형인 ADDIE 모형에 따라 진행되었다. 분석 단계에서 선행연구 결과를 바탕으로 교수설계 방향을 설정하였다. 설계 단계에서 구체적으로 온라인 환경에서의 실습 수업 운영을 계획하고 교육 대상자 수와 교육 내용, 교육 시간을 정하였다. 개발 단계에서 제작된 수업자료는 온라인 실습수업에 용이하도록 구성된 키트, 환경오염에 대한 경각심을 자극하는 이미지와 업사이클링에 대한 의미를 담은 이론 자료, 제작 과정을 담은 동영상, 사진 등을 PPT 자료로 정리하였으며, 교육에 대한 사후 평가 및 피드백을 위한 수업 만족도와 환경의식 관련 설문지로 구성하였다. 적용 단계는 총 두 번의 수업을 실행하였으며, 각 18명씩 총 36명의 학습자가 참여하였다. 첫 번째 수업의 피드백을 반영하여 3개월 후 두번째 수업을 실행하였다. 평가단계에서 1차 수업 학습자들이 수업 만족도와 관련한 반응에 따라 수업 설계와 자료를 보완한 결과, 2차 수업 학습자들로부터는 원활한 소통과 자유로운 자료 공유가 만족스럽다는 긍정적인 평가를 받았다. 환경의식 및 태도 관련 설문에서 두 실행에서 모두 문항의 총 평균이 4.27로 전반적으로 긍정적인 평가를 확인할 수 있었으며, 개방형 질문에서 업사이클링의 가치를 깨닫고 환경의식이 개선되었다는 평가를 받았다.
본 연구에서는 해양 모니터링 중에 기록된 돌고래 클릭 신호를 분류하기 위해 순환 신경망(RNN)을 적용하는 방법을 검토했다. 클릭 신호 분류의 정확도를 높이기 위해 단일 시계열 자료를 분수 푸리에 변환을 사용하여 분수 영역으로 변환하여 특징을 확장했으며, 분류를 위한 최적의 네트워크를 결정하기 위해 세 가지 순환 신경망 모델(LSTM, GRU, BiLSTM)을 비교 분석하였다. 순환 신경망 모델의 입력 자료로써 이용된 분수 영역 자료의 경우, 분수 푸리에 변환 시 회전 각도에 따라 다른 특성을 가지므로, 각 네트워크 모델에 따라 우수한 성능을 가지는 회전 각도 범위를 분석했다. 이때 네트워크 성능 분석을 위해 정확도, 정밀도, 재현율, F1-점수와 같은 성능 평가 지표를 도입했다. 수치실험 결과, 세 가지 네트워크 모두 높은 성능을 보였으며, BiLSTM 네트워크가 LSTM, GRU에 비해 뛰어난 학습 결과를 제공했다. 마지막으로, 현장 자료 적용 가능성 측면에서 BiLSTM 네트워크가 다른 네트워크에 비해 낮은 오탐지 결과를 제공하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.