학습제어 시스템은 제어대상 시스템의 파라미터를 모르는 경우에 파라미터 적응의 개념을 도입해서, 일종의 hybrid형 적응제어 시스템으로 간주하여 설계될 수 있다. 이러한 파라미터 적응형 학습제어 시스템은 이미 보고되었으나 연속시간 시스템에만 적용될 수 있었다. 본 논문에서는 메모리소자를 반드시 포함하여야 하는 학습시스템에 대하여, 위의 제어알고리즘을 이산화 함으로써 디지탈기술의 발전에 비추어 실제의 적용을 용이하도록 하였으며, 그 타당성을 시뮬레이션으 통하여 확인하였다.
In this paper, we propose a real-time hand gesture recognition algorithm to eliminate the inconvenience of using hand controllers in VR applications. The user's 3D hand coordinate information is detected by leap motion sensor and then the coordinates are generated into two dimensional image. We classify hand gestures in real-time by learning the imaged 3D hand coordinate information through SSD(Single Shot multibox Detector) model which is one of CNN(Convolutional Neural Networks) models. We propose to use all 3 channels rather than only one channel. A sliding window technique is also proposed to recognize the gesture in real time when the user actually makes a gesture. An experiment was conducted to measure the recognition rate and learning performance of the proposed model. Our proposed model showed 99.88% recognition accuracy and showed higher usability than the existing algorithm.
현재 대부분 e-Learning에서 이루어지고 있는 교육은 학습(Loaming)이 아닌 단순 훈련(Trainning)만이 이루어지고 있다. e-Learning에서 진정한 학습이 이루어지기 위해서는 학습자의 수준에 맞는 적응적(Adaptive), 적시적(Just-in-Time) 학습이 단편적이 아닌 연속적, 통합적으로 이루어져야 한다. 이를 위해서는 기술적 관점뿐만 아니라, 발견적 학습(heuristic learning)관점에서 학습자원이 기술되고, 컴퓨터(에이전트)가 학습자원의 구성요소인 학습목표(Goal), 학습내용(Content), 학습맥락(Context), 학습구조(Structure), 학습전략(Strategy)의 의미(Semantic)와 관계(Relation)를 이해해 학습자에게 필요한 정보만을 검색, 추론해주고 이를 학습자 수준에 맞게 재가공해 학습자에게 지식(Knowledge)을 적응적(Adaptive), 적시적(Just-in-Time)으로 전달해주는 e-Learning 학습 환경이 필수적이다. 메타데이터(RDF), 온톨로지(Ontology), 에이전트(Agent) 매커니즘의 시멘틱 웹을 e-Learning 환경에 적용함으로써 학습자원의 구성요소의 의미와 관계를 파악해 적응적(Adaptive)으로 지식을 전달해 주어 자기 주도적 학습(Self-directed Loaming)을 실현해 줄 수 있다.
Recently, in order to analyze the time series problems that occur in the nature word, and analyzing method using a neural electric network is being studied more than a typical statistical analysis method. A neural electric network has a generalization performance that is possible to estimate and analyze about non-learning data through the learning of a population. In this paper, after collecting weather datum that was collected from 1987 to 1996 and learning a population established, it suggests the weather forecasting system for an estimation and analysis the future weather. The suggested weather forecasting system uses 28*30*1 neural network structure, raises the total learning numbers and accuracy letting the selecting concentration learning about the pattern, that is not collected, using the descending epsilon learning method. Also, the weather forecasting system, that is suggested through a comparative experiment of the typical time series analysis method shows more superior than the existing statistical analysis method in the part of future estimation capacity.
The purpose of this study was to identify factors affecting Visual Display Terminal (VDT) syndrome for elementary school students in the digital learning environment. Multiple regression analyses were performed to identify the factors affecting VDT syndrome in the digital learning environment. This was conducted with 256 elementary school students in grades 5-6 with more than a year of experience in digital learning. The regression model explained 41% of elementary school students' VDT syndrome in the digital learning environment. Variables significantly affecting VDT syndrome include game addiction, sleep time, and air quality with game addiction as the most influential. In the digital learning environment, VDT syndrome is significant because it has physical and psychological impacts on the growth of elementary school students. Therefore, it is necessary to develop guidelines for ideal computer usage habits for this age group.
Collaborative learning has been highlighted as an effective method of teachers' professional development in various studies. To disclose teachers' discourse threads in the process of collaborative learning for developing their knowledge, this paper adopted two methods including "content analysis" and "time-sequential analysis" of learning analytics. Such analyses were implemented for mining teachers' updated knowledge and the discourse threads in the discussion during collaborative learning. The materials for analysis involved two aspects: one was from the video-taped lesson observation reports written by teachers before and after discussing, and the other was from their discourses during the discussion process. The results proved that teachers' knowledge for teaching the centroid of a triangle was updated in the collaborative learning period, and also revealed the discourse threads of teachers' collaboration contained "requesting information or opinions", "building on ideas", and "providing evidence or reasoning", with the emphasis on "challenging ideas or re-focusing talk"
This study found that the use of the metaverse enabled two-way communication online, regardless of time and place, making it possible to achieve teaching and learning goals. As applied subject (Occupational ethics in science and engineering) that allow for curriculum activities using the metaverse, team activities, and Problem Based Learning (PBL) selected. This study selected the teaching method that combines team activities of in-class and metaverse depending on the team projects and applies them appropriately according to the class procedure. Basic theoretical content learning and team activities related to the class content were conducted during class time. Also In Gathertown, team projects were carried out through team activities. As a result, this study confirmed that the PBL-subjects curriculum are definitely possible through the progress of the metaverse activities. If the educational environment for metaverse activities and the instructor's preparation and participation are supported, a very high learning effect is expected.
본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.
이 시스템의 개발 목적은 상업화의 화두인 교육과 엔터테인먼트분야에서 새롭게 제작한 교육용 콘텐츠를 이용하여 현재 보급이 활성화중인 IPTV 상용화에 일조하는 것이다. 교육적 활용을 위하여 반응시험기(Stimulus $Tester^{TM}$)를 이용하였다. 반응시험기는 리모컨 또는 제 3의 도구로 학습 한 후 이에 대한 피드백으로서 반응 속도를 부여하는 시스템을 말한다. 이 시스템에서는 주어진 문제 해결 시간 동안에 학습자가 반응을 하면 정오반응 여부 및 그에 문제 해결에 소요된 시간에 대한 피드백이 제시된다. 이 과정에서 정오반응 여부와 더불어 반응시간 피드백을 통하여 학습자가 스스로의 학습능률 정도를 확인하게 되고 이후 학습 증진에 도움이 되도록 하였다. 이 피드백 과정은 개인 PC에서 연결된 서버를 통하여 대상자에게 다시 PC로 포인트를 배분하는 과정을 통하도록 하였다. 이 시스템의 보급을 통하여 IPTV의 활성화와 더불어 교육 콘텐츠 개발로 인한 점진적인 산업의 활성화를 기대할 수 있을 것으로 보인다. 이 시스템을 통한 학습능률을 증진여부를 검증하기위하여 일반 남녀대학생을 대상으로 인터넷기반과 페이퍼기반의 학습증진여부를 측정하였으며, 그 결과 우수한 경우 최대 지속적인 7일 반응으로 2.47분에서 1.27분으로 학습효과가 51% 증가하였다.
본 연구에서는 사이버대학생의 학업적 자기효능감, 학습시간과 환경관리, 교수실재감, 몰입, 만족도간의 관계를 검증하는 것을 목적으로 하였다. 이러한 연구 목적을 달성하기 위해서 2011년 W사이버대학 학생 317명을 대상으로 2주 동안 웹 설문을 실시하였다. 그 결과 학업적 자기효능감, 학습시간과 환경관리, 교수실재감은 몰입(${\beta}$=.712, p<.05)과 만족도(${\beta}$=.531, p<.05)를 유의하게 예측하였다. 또한 몰입은 학업적 자기효능감, 학습시간과 환경관리, 교수실재감과 만족도을 매개하는 변수임을 확인 하였다. 본 연구결과를 바탕으로 사이버대학생의 학습효과와 만족도를 높이기 위한 운영전략을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.