• 제목/요약/키워드: time history response analysis

검색결과 594건 처리시간 0.021초

댐의 내진설계시 해석방법과 그 적용성 평가 (Evaluation of the Application and Analysis Method at Seismic Design of Dam)

  • 황성춘
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.4239-4249
    • /
    • 2011
  • 일본과 같은 지진 빈발국은 CFRD의 경우 지진시 댐제체 상류부의 Face Slab에 응력이 집중하여 파괴되는 경우를 대부분 상정하여 내진안정성을 평가한다. 그러나 우리나라에서는 현재까지 이에 대한 명확한 해석방법이 확립되어 있지 않다. 본 논문은 CFRD에 대하여 등가정적해석 및 동적해석 수행 후 진동대시험과 비교하여 그 신뢰성을 평가하였다. 등가정적해석은 진도법, 수정진도법, Newmark법을 적용하였고 동적해석은 주파수응답해석, 시간이력 해석법을 적용하였다. 해석결과 해석 방법별 편차는 발생하나 가속도 및 변위의 발생경향은 진동대시험 결과와 잘 일치하였다.

A Time Integration Method for Analysis of Dynamic Systems Using Domain Decomposition Technique

  • Fujikawa Takeshi;Imanishi Etsujiro
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.429-436
    • /
    • 2005
  • This paper presents a precise and stable time integration method for dynamic analysis of vibration or multibody systems. A total system is divided into several subsystems and their responses are calculated separately, while the coupling effect is treated equivalently as constant force during time steps. By using iterative procedure to improve equivalent coupling forces, a precise and stable solution is obtained. Some examples such as a seismic response and multibody analyses were carried out to demonstrate its usefulness.

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토 (Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System)

  • 송호산;전대한
    • 한국지진공학회논문집
    • /
    • 제7권1호
    • /
    • pp.9-16
    • /
    • 2003
  • 건축구조물의 내진성능을 효율적으로 평가하기 위해서는 다자유도계 구조물을 등가 1자유도계로 표현하는 것이 필요하다. 본 연구는 다층 철근콘크리트 골조구조를 등가 1자유도계로 치환하는 방법을 제시하였다. 다층 철근콘크리트 모멘트 골조를 등가 1자유도계로 치환하여 모델화에 따른 비선형 시간이력해석을 통하여 다자유도계 구조물의 축약 방법의 타당성을 검토하는 것이 목적이다. 다층 골조구조의 정적 비선형 해석을 수행하여, 등가 1자유도계의 복원력 모델을 설정하였다. 다층 골조 구조의 비선형 시간이력해석 응답치와 등가 1자유도계의 시간이력해석 응답치를 비교하여, 등가 1자유도계 모델의 타당성을 검증하였다. 다층 철근콘크리트 골조구조를 등가 1자유도계로 치환하여 비선형 지진응답을 구하는 방법은 충분히 그 타당성이 있다는 것이 확인되었다. 다층 철근콘크리트 골조구조의 대표변위로서 1차모드참여 yector$_1$,$\beta${$_1$$\mu$}= 1인 높이가 등가 1자유도계의 응답을 가장 근사하게 나타내는 것을 알 수 있었다. 등가 1자유도계의 지진응답해석에 사용하는 복원력 모델의 이력곡선에 따라 응답파형에 차이가 생기므로, 실제 frame 구조의 복원력 특성을 반영한 이력모델을 선정하는 것이 중요하다.

재현주기에 따른 응답스펙트럼과 설계지반운동 산정방법 (Generation of Design Response Spectrum and Earthquake Ground Motion Considering the Recurrence Period)

  • 이현호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.58-65
    • /
    • 1998
  • A purpose of this research is to develope the calculation methods of design input seismic loads, Where, calculation methods are ; (1) Considering different recurrence period of earthquakes which was proposed by ATC 14. (2) Using earthquake records which was modified Korean codes. Responce spectra that was adopted by codes has an estimated recurrence interval of 500 years, with approximately a 90 percent probability of not being exceeded in 50 years. But If we considered the life-time of existing buildings in some cases, response spectra be modified with return period of earthquakes. If we be design highrise and irregular buildings, dynamic analysis method that use time history records should be used. But in Korea, time history records of earthquakes was very few. Therefore to use foreign countries's earthquake record, it is need to select of records considered Korean coeds. As a results, this study propose a calculation method of seismic design input loads that considered return period of earthquakes and also propose using method of earthquakes.

  • PDF

일본 원전 내진설계 기술기준을 적용한 모의지진파(가속 도시간이력) 작성 (Generation of Design Time History Complying With Japanese Seismic Design Standards for Nuclear Power Plants)

  • 진승민;김용복;이용선;문일환
    • 한국지진공학회논문집
    • /
    • 제25권2호
    • /
    • pp.83-91
    • /
    • 2021
  • Seismic designs for Korean nuclear power plants (NPPs) under earthquakes' design basis are noticed due to the recent earthquake events in Korea and Japan. Japan has developed the technologies and experiences of the NPPs through theoretical research and experimental verification with extensively accumulated measurement data. This paper describes the main features of the design-time history complying with the Japanese seismic design standard. Proper seed motions in the earthquake catalog are used to generate one set of design time histories. A magnitude and epicentral distance specify the amplitude envelope function configuring the shape of the earthquake. Cumulative velocity response spectral values of the design time histories are compared and checked to the target response spectra. Spectral accelerations of the time histories and the multiple-damping target response spectra are also checked to exceed. The generated design time histories are input to the reactor building seismic analyses with fixed-base boundary conditions to calculate the seismic responses. Another set of design time histories is generated to comply with Korean seismic design procedures for NPPs and used for seismic input motions to the same reactor containment building seismic analyses. The responses at the dome apex of the building are compared and analyzed. The generated design time histories will be also applied to subsequent seismic analyses of other Korean standard NPP structures.

지진발생시 교량형식에 따른 낙교위험도 분석 (Analysis of Unseating Failure of Various Types of Bridge Spans under Seismic Excitations)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.123-130
    • /
    • 1998
  • The probability of unseating failure of the bridge spans under earthquakes is investigated. Seismic excitations are simulated as nonstationary processes by combining a stationary process and an intensity function. For computational convenience, a simplified single-degree-of-freedom model is adopted, which retains the dynamic characteristics of the original brige motion in concern. The time history analysis for the developed single degree-of-freedom model are carried out to evaluate the response processes, and the probabilistic characteristics of response displacements are evaluated. The reliability analysis of the bridge against the unseating failure is performed with the statistical information of the maximum displacements of responses.

  • PDF

내진설계를 위한 지진 입력하중 조정 방법 (Method of the Calibration of earthquake Ground Motions for Seismic Design)

  • 공도환
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.20-27
    • /
    • 1998
  • In the current seismic design codes design earthquake is usually defined as the earthquake with the 90 percent probability of not being exceeded in the life time of a structure which is assumed as 50 years equivalent to the earthquake with 475 year recurrence period. However the life time of tall building structures may be much longer than 50 yers. The current seismic design code requires the modal analysis or dynamic time history analysis for the buildings with the height exceeding a certain height limit. The objective of this study is to collect the earthquake ground motion(EQGM) which can be used for dynamic time history analysis for tall buildings. For this purpose linear elastic design response spectrum (LEDRS) in the code is scaled to account for the recurrence period of the design earthquake. The earthquake ground motions which has been recorded are calibrated to fit the scaled LEDRS. The set of calibrated EQGM can be treated as design EQGM for the design of tall building with longer lifetime than ordinary building.

  • PDF

초대형 부유식 구조물의 상부구조체에 대한 동적응답해석 (Dynamic Response Analysis of Superstructures on Very Large Floating Structures)

  • 곽명하;송화철
    • 한국항해항만학회지
    • /
    • 제26권4호
    • /
    • pp.441-447
    • /
    • 2002
  • 전세계적인 인구증가와 산업화로 인하여 육지면적의 부족, 육상자원의 고갈 등의 문제로 해양의 이용 및 개발의 관심이 늘어나고 있으며, 환경친화적인 해양공간을 확보하기 위하여 초대형 부유식 해상구조물에 대한 기술개발이 요구되고 있다. 본 논문에서는 초대형 부유식 구조물의 상부구조물에 대한 시간이력해석법에 대하여 소개하고 파랑하중에 의한 부체변형을 이용한 시간변위이력 산정 방법을 제안한다. 또한 주기 및 진폭의 변화에 따른 상부구조물의 동적 시간이력응답 결과를 분석하고 초대형 부유식 상부구조물 시설계안의 동적구조안전성을 평가한다.

Free Surface Tracking for the Accurate Time Response Analysis of Nonlinear Liquid Sloshing

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1517-1525
    • /
    • 2005
  • Liquid sloshing displays the highly nonlinear free surface fluctuation when either the external excitation is of large amplitude or its frequency approaches natural sloshing frequencies. Naturally, the accurate tracking of time-varying free surface configuration becomes a key task for the reliable prediction of the sloshing time-history response. However, the numerical instability and dissipation may occur in the nonlinear sloshing analysis, particularly in the long-time beating simulation, when two simulation parameters, the relative time-increment parameter a and the fluid mesh pattern, are not elaborately chosen. This paper intends to examine the effects of these two parameters on the potential-based nonlinear finite element method introduced for the large amplitude sloshing flow.