• Title/Summary/Keyword: time domain data

Search Result 1,310, Processing Time 0.036 seconds

Processing of dynamic wind pressure loads for temporal simulations

  • Hemon, Pascal
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.425-442
    • /
    • 2015
  • This paper discusses the processing of the wind loads measured in wind tunnel tests by means of multi-channel pressure scanners, in order to compute the response of 3D structures to atmospheric turbulence in the time domain. Data compression and the resulting computational savings are still a challenge in industrial contexts due to the multiple trial configurations during the construction stages. The advantage and robustness of the bi-orthogonal decomposition (BOD) is demonstrated through an example, a sail glass of the Fondation Louis Vuitton, independently from any tentative physical interpretation of the spatio-temporal decomposition terms. We show however that the energy criterion for the BOD has to be more rigorous than commonly admitted. We find a level of 99.95 % to be necessary in order to recover the extreme values of the loads. Moreover, frequency limitations of wind tunnel experiments are sometimes encountered in passing from the scaled model to the full scale structure. These can be alleviated using a spectral extension of the temporal function terms of the BOD.

Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation

  • Zhou, Li;Chuang, Zhenju;Bai, Xu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2018
  • A numerical method is proposed to simulate level ice interaction with ship in transverse and longitudinal directions in time domain. A novel method is proposed to simulate non-symmetric transverse force in a stochastic way. On the basis of observations from the model tests, the simulation of longitudinal force combines the ice bending force acting on the waterline, submersion force below the waterline and ice friction forces caused by transverse force and ice floes rotation amidships. In the simulations the ship was fixed and towed through an intact ice sheet at a certain speed. The setup of the numerical simulation is similar to the ice tank setup as much as possible. The simulated results are compared with model tests data and the results show good agreement with the measurement.

Improved object recognition performance of UWB radar according to different window functions

  • Nguyen, Trung Kien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.395-402
    • /
    • 2019
  • In this paper, we implemented an Ultra-Wideband radar system using Stripmap Synthetic Apertrure Radar algorithm to recognize objects inside a box. Different window functions such as Hanning, Hamming, Kaiser, and Taylor functions to improve image recognition performance are applied and implemented to radar system. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to recognize the conductor plate located inside 1m3 box. To obtain the image, we use the propagation data in the time domain according to the 1m movement distance and use the Range Doppler algorithm. The effect of different window functions to improve the recognition performance of the image are analyzed. From the compared results, we confirmed that the Kaiser window function can obtain a relatively good image.

A site-specific CFD study of passing ship effects on multiple moored ships

  • Chen, Hamn-Ching;Chen, Chia-Rong;Huang, Erick T.
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-77
    • /
    • 2019
  • A local-analytic-based Navier-Stokes solver has been employed in conjunction with a compound ocean structure motion analysis program for time-domain simulation of passing ship effects induced by multiple post-Panamax class ships in the exact condition of a real waterway. The exact seabed bathymetry was reproduced to the utmost precision attainable using the NOAA geophysical database for Virginia Beach, NOAA nautical charts for Hampton Roads and Norfolk harbor, and echo sounding data for the navigation channel and waterfront facilities. A parametric study consists of 112 simulation cases with various combinations of ship lanes, ship speeds, ship heading (inbound or outbound), channel depths, drift angles, and passing ship coupling (in head-on or overtaking encounters) were carried out for two waterfront facilities at NAVSTA Norfolk and Craney Island Fuel Terminal. The present paper provides detailed parametric study results at both locations to investigate the site-specific passing ship effects on the motion responses of ships moored at nearby piers.

Distributed Monitoring Technology using Fiber-Optic Embedded Sensor (광섬유 임베디드 센서 기반 분포 모니터링 기술)

  • Kim, Youngwoong;Kim, Jong-Yeol;Ryu, Gukbeen;Hwang, Young-Gwan;Kim, Hyun-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.617-619
    • /
    • 2022
  • An embedded fiber-optic sensor was manufactured using 3D printing technology for distributed structural monitoring. Strain distribution of the embedded sensor was measured by the optical frequency domain reflectometry, and real-time data visualization for the embedded sensor model was demonstrated.

  • PDF

An Experimental Study on the Accuracy of Concrete Unit-Water Content Using High-frequency Water Fraction Sensors (고주파수분센서를 이용한 콘크리트 단위수량 평가 정확도에 관한 실험적 연구)

  • Youn, Ji-Won;Lee, Seung-Yeop;Yu, Seung-Hwan;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.61-62
    • /
    • 2022
  • The unit quantity is an important factor influencing the durability, workability, and quality of concrete. Methods for measuring the unit quantity include a high frequency heating method, a unit volume mass method, a capacitance method, and a microwave method. However, these methods have disadvantages of poor measurement method, time required, and accuracy, and a relatively experimental method compensating for these disadvantages was used to measure the unit quantity using a high frequency main sensor (FDR) capable of simple and fast measurement. In addition, the unit quantity was evaluated by analyzing the measurement data through deep learning.

  • PDF

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat;Boonchai Phungpaingam;Kamtornkiat Musiket;Yunping Xi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.383-392
    • /
    • 2023
  • The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.

THE IMPROVEMENT OF THE RELATIVE POSITIONING PRECISION FOR GPS L1 SINGLE FREQUENCY RECEIVER USING THE WEIGHTED SMOOTHING TECHNIQUES (가중 평활화 기법을 이용한 GPS L1 단일 주파수 수신기의 상대 측위 정밀도 향상)

  • Choi, Byung-Kyu;Park, Jong-Uk;Joh, Jeong-Ho;Lim, Hyung-Chul;Park, Phi-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.371-382
    • /
    • 2004
  • To improve the precision of relative positioning for GPS single frequency(L1) receiver, we accomplished the GPS data processing using the weighted smoothing techniques. The weighted phase smoothing technique is used to minimize the measurement error of pseudorange and position domain smoothing technique is adopted to make the complement of cycle-slip affection. we also considered some component errors like as ionospheric error, which are related with baseline length, and processed for several baselines (5, 10, 30, 40, and 150 km) to check the coverage area of this algorithm. This paper shows that weighted phase smoothing technique give more stable results after using this technique and the position domain smoothing technique can reduce the errors which are sensitive to the observational environment. Based on the results, we could find out that this algorithm is available for post-time and real-time applications and these techniques can be substitution methods which is able to get the high accuracy and precision without resolving the Integer ambiguity.

A Dataset from a Test-bed to Develop Soil Moisture Estimation Technology for Upland Fields (농경지 토양수분 추정 기술 개발을 위한 테스트 베드 데이터 세트)

  • Kang, Minseok;Cho, Sungsik;Kim, Jongho;Sohn, Seung-Won;Choi, Sung-Won;Park, Juhan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.107-116
    • /
    • 2020
  • In this data paper, we share the dataset obtained during 2019 from the test-bed to develop soil moisture estimation technology for upland fields, which was built in Seosan and Taean, South Korea on May 3. T his dataset includes various eco-hydro-meteorological variables such as soil moisture, evapotranspiration, precipitation, radiation, temperature, humidity, and vegetation indices from the test-bed nearby the Automated Agricultural Observing System (AAOS) in Seosan operated by the Korea Meteorological Administration. T here are three remarkable points of the dataset: (1) It can be utilized to develop and evaluate spatial scaling technology of soil moisture because the areal measurement with wide spatial representativeness using a COSMIC-ray neutron sensor as well as the point measurement using frequency/time domain reflectometry (FDR/TDR) sensors were conducted simultaneously, (2) it can be used to enhance understanding of how soil moisture and crop growth interact with each other because crop growth was also monitored using the Smart Surface Sensing System (4S), and (3) it is possible to evaluate the surface water balance by measuring evapotranspiration using an eddy covariance system.

Development of a Multichannel Eddy Current Testing Instrument(I) (다중채널 와전류탐상검사 장치 개발(I))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoon, Byung-Sik;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.155-161
    • /
    • 2010
  • Recently, the electromagnetic techniques of the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In this study, the synthesizer module and the analog module which are essential to the ECT system were primarily developed. The developed ECT system is basically a multifrequency type which is able to inject the maximum four frequencies based on the frequency and time domain multiplexing method. Conclusively, we confirmed that the EC signal was processed appropriately in each circuit modules, and the Lissajous EC signal was displayed in the impedance plane.