International Journal of Industrial Entomology and Biomaterials
/
v.22
no.2
/
pp.59-64
/
2011
Protein kinase C (PKC) is involved in many cellular signaling pathways, it participates in many physiological processes, such as cell cycle, growth, proliferation, differentiation and apoptosis. To investigate the effect of PKC on the silkworm midgut tissue infection of Bombyx mori parvo-like virus (BmPLV), a B. mori atypical protein kinase C (BmaPKC) gene was cloned from larval midgut tissue, expressed in E. coli and purified. Additionally, the BmPLV susceptible silkworm strain and resistant silkworm strain were used to test the effect of the B. mori infection on BmPLV. The result showed that BmaPKC encodes a predicted 586 amino acid protein, which contains a C-terminal kinase domain and an N-terminal regulatory domain. The maximum expression amount of the soluble (His)6-tagged fusion protein was detected after 0.8 mmol/L IPTG was added and cultured at $21^{\circ}C$. The (His) 6-tagged fusion protein revealed about 73 kDa molecular weight which confirmed by western blot and mass spectrography. Furthermore BmaPKC protein were detected at 0-72 h post-infection in BmPLVinfected larval midgut tissue, western blot showed that as time went on, the expression of BmaPKC increased gradually in susceptible strain, the expression quantity on 72 h is 5 times of 0 h. However, in resistant strain, the expression quantity is slightly lower than susceptible strain. But no significant change in resistant strain was observed as time went on. The available data suggest that BmaPKC may involve in the regulation of BmPLV proliferation.
In hybrid block-based video coding, transform coding converts spatial domain residual signals into frequency domain data and concentrates energy in a low frequency band to achieve a high compression efficiency in entropy coding. The state-of-the-art video coding standard, VVC(Versatile Video Coding), uses DCT-2(Discrete Cosine Transform type 2), DST-7(Discrete Sine Transform type 7), and DCT-8(Discrete Cosine Transform type 8) for primary transform. In this paper, considering that DCT-2, DST-7, and DCT-8 are all linear transformations, we propose an inverse transform that reduces the number of multiplications in the inverse transform by using the linearity of the linear transform. The proposed inverse transform method reduced encoding time and decoding time by an average 26%, 15% in AI and 4%, 10% in RA without the increase of bitrate compared to VTM-8.2.
In this paper, scenario-based urban flood prediction for the entire Jinju city was performed, and a simulation domain was constructed using G2D as a 2-dimensional urban flood analysis model. The domain configuration is DEM, and the land cover map is used to set the roughness coefficient for each grid. The input data of the model are water level, water depth and flow rate. In the simulation of the built G2D model, virtual rainfall (3 mm/10 min rainfall given to all grids for 5 hours) and virtual flow were applied. And, a GPU acceleration technique was applied to determine whether to run the flood analysis model in the target area. As a result of the simulation, it was confirmed that the high-resolution flood analysis time was significantly shortened and the flood depth for visual flood judgment could be created for each simulation time.
Purpose: The Sinovac and AstraZeneca vaccines are the primary coronavirus disease 2019 vaccines in Indonesia. Antibody levels in vaccine-injected individuals will decline substantially over time, but data supporting the duration of such responses are limited. Therefore, this study aims to quantitatively evaluate antibody responses resulting from the completion of Sinovac and AstraZeneca administration in Indonesian adults. Materials and Methods: Participants were divided into two groups based on their vaccine type. Both groups were then assessed on the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (anti-SRBD) concentrations. The anti-SRBD level was measured using Elecsys anti-SARS-CoV-2 S assay and analyzed every month until 3 months after the second vaccination. Results: The results presented significant differences (p=0.000) in immunoglobulin G (IgG) titers among the vaccines' measurement duration, where all samples observed a decrease in IgG titers over time. The mean titer levels of anti-SRBD IgG in the group given Sinovac were high in the first month after vaccination and decreased by 55.7% in 3 months. AstraZeneca showed lesser immune response with a slower decline rate. Adverse effects following immunization (AEFI) showed that systemic reactions are the most reported in both vaccines, with a higher percentage in the second dose of AstraZeneca type vaccines. Conclusion: Sinovac induced more significant titers of anti-SRBD IgG 1 month after the second dose but generated fewer AEFIs. In contrast, AstraZeneca generated more AEFIs, in mild to moderate severity, but provided lower levels of anti-SRBD IgG.
In this paper, an improved fractal color image decoding method using the data dependence parts and the vector distortion measure is proposed. The vector distortion measure exploits the correlation between different color components. The pixel in RGB color space can be considered as a 30dimensional vector with elements of RGB components. The root mean square error(rms) in RGB color for similarity measure of two blocks R and R' was used. We assume that various parameter necessary in image decoding are stored in the transform table. If the parameter is referenced in decoding image, then decoding is performed by the recursive decoding method. If the parameter is not referenced in decoding image, then the parameters recognize as the data dependence parts and store its in the memory. Non-referenced parts can be decoded only one time, because its domain informations exist in the decoded parts by the recursive decoding method. Non-referenced parts are defined the data dependence parts. Image decoding method using data dependence classifies referenced parts and non-referenced parts using information of transform table. And the proposed method can be decoded only one time for R region decoding speed than Zhang & Po's method, since it is decreased the computational numbers by execution iterated contractive transformations for the referenced range only.
This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.
This study was an attempt to control and monitor Computerized Numerical Controller (CNC) machines anywhere and anytime for the development of a ubiquitous machine (u-machine). With a Personal Digital Assistant (PDA) phone, the machine status and machining data of CNC machines can be monitored in wired and wireless environments, including the environments of IMT2000 and Wireless LAN. Moreover, CNC machines can be controlled anywhere and anytime. The concept of the anywhere-anytime controlling and monitoring of a manufacturing system was implemented in this study for the purpose of u-manufacturing and u-machines. In this concept, the communication between the CNC controller and the PDA phone was successfully performed anywhere and anytime for the real-time monitoring and control of CNC machines. In addition, the interface between the CNC controller and the developed application module was implemented by Object linking and embedding for Process Control (OPC) and shared CNC memory. For communication, the design of a server contents module within the target CNC was based on a TCP/IP. Furthermore, the client contents module within the PDA phone was designed with the aid of embedded c++ programming for mobile communication. For the interface, the monitoring data, such as the machine status, the machine running state, the name of the Numerical Control (NC) program, the alarm and the position of the stage axes, were acquired in real time from real machines with the aid of the OPC method and by sharing the CNC memory. The control data, such as the start, hold, emergency stop, reserved start and reserved stop, were also applied to the CNC domain of the real machine. CNC machines can therefore be controlled and monitored in real time, anywhere and anytime. Moreover, prompt notification from CNC machines to mobile phones, including cellular phones and PDA phones, can be automatically realized in emergencies.
Seongi Min;Kiwon Jeong;Yunwoo Lee;Donghwi Jung;Seungjun Kim
Computers and Concrete
/
v.31
no.5
/
pp.405-417
/
2023
The submerged floating tunnel (SFT) is tethered by mooring lines anchored to the seabed, therefore, the structural integrity of the anchor should be sensitively managed. Despite their importance, reaction forces cannot be simply measured by attaching sensors or load cells because of the structural and environmental characteristics of the submerged structure. Therefore, we propose an effective method for estimating the reaction forces at the seabed anchor of a submerged floating tunnel using a structural pattern model. First, a structural pattern model is established to use the correlation between tunnel motion and anchor reactions via a deep learning algorithm. Once the pattern model is established, it is directly used to estimate the reaction forces by inputting the tunnel motion data, which can be directly measured inside the tunnel. Because the sequential characteristics of responses in the time domain should be considered, the long short-term memory (LSTM) algorithm is mainly used to recognize structural behavioral patterns. Using hydrodynamics-based simulations, big data on the structural behavior of the SFT under various waves were generated, and the prepared datasets were used to validate the proposed method. The simulation-based validation results clearly show that the proposed method can precisely estimate time-series reactions using only acceleration data. In addition to real-time structural health monitoring, the proposed method can be useful for forensics when an unexpected accident or failure is related to the seabed anchors of the SFT.
To achieve the noise reduction effect in boundary image matching, we use the moving average transform of time-series matching. Our motivation is based on an intuition that using the moving average transform we may exploit the noise reduction effect in boundary image matching as in time-series matching. To confirm this simple intuition, we first propose $\kappa$-order image matching, which applies the moving average transform to boundary image matching. A boundary image can be represented as a sequence in the time-series domain, and our $\kappa$-order image matching identifies similar images in this time-series domain by comparing the $\kappa$-moving average transformed sequences. Next, we propose an index-based matching method that efficiently performs $\kappa$-order image matching on a large volume of image databases, and formally prove the correctness of the index-based method. Moreover, we formally analyze the relationship between an order $\kappa$ and its matching result, and present a systematic way of controlling the noise reduction effect by changing the order $\kappa$. Experimental results show that our $\kappa$-order image matching exploits the noise reduction effect, and our index-based matching method outperforms the sequential scan by one or two orders of magnitude.
Queries for tracing tag locations are among the most challenging requirements in RFID based applications, including automated manufacturing, inventory tracking and supply chain management. For efficient query processing, a previous study proposed the index scheme for storing tag objects, based on the moving object index, in 3-dimensional domain with the axes being the tag identifier, the reader identifier, and the time. In a different way of a moving object index, the ranges of coordinates for each domain are quite different so that the distribution of query regions is skewed to the reader identifier domain. Previous indexes for tags, however, do not consider the skewed distribution for query regions. This results in producing many overlaps between index nodes and query regions and then causes the problem of traversing many index nodes. To solve this problem, we propose a new disproportional insertion and split policy of the index for RFID tags which is based on the R*-tree. For efficient insertion of tag data, our method derives the weighted margin for each node by using weights of each axis and margin of nodes. Based the weighted margin, we can choose the subtree and the split method in order to insert tag data with the minimum cost. Proposed insertion method also reduces the cost of region query by reducing overlapped area of query region and MBRs. Our experiments show that the index based on the proposed insertion and split method considerably improves the performance of queries than the index based on the previous methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.