• Title/Summary/Keyword: time domain data

Search Result 1,309, Processing Time 0.025 seconds

Detection of the expression of a Bombyx mori Atypical Protein Kinase C in BmPLV-Infected Larval Midgut

  • Cao, Jian;He, Yuanqing;Li, Guohui;Chen, Keping;Kong, Jie;Wang, Fenghua;Shi, Jing;Yao, Qin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.59-64
    • /
    • 2011
  • Protein kinase C (PKC) is involved in many cellular signaling pathways, it participates in many physiological processes, such as cell cycle, growth, proliferation, differentiation and apoptosis. To investigate the effect of PKC on the silkworm midgut tissue infection of Bombyx mori parvo-like virus (BmPLV), a B. mori atypical protein kinase C (BmaPKC) gene was cloned from larval midgut tissue, expressed in E. coli and purified. Additionally, the BmPLV susceptible silkworm strain and resistant silkworm strain were used to test the effect of the B. mori infection on BmPLV. The result showed that BmaPKC encodes a predicted 586 amino acid protein, which contains a C-terminal kinase domain and an N-terminal regulatory domain. The maximum expression amount of the soluble (His)6-tagged fusion protein was detected after 0.8 mmol/L IPTG was added and cultured at $21^{\circ}C$. The (His) 6-tagged fusion protein revealed about 73 kDa molecular weight which confirmed by western blot and mass spectrography. Furthermore BmaPKC protein were detected at 0-72 h post-infection in BmPLVinfected larval midgut tissue, western blot showed that as time went on, the expression of BmaPKC increased gradually in susceptible strain, the expression quantity on 72 h is 5 times of 0 h. However, in resistant strain, the expression quantity is slightly lower than susceptible strain. But no significant change in resistant strain was observed as time went on. The available data suggest that BmaPKC may involve in the regulation of BmPLV proliferation.

Fast Inverse Transform Considering Multiplications (곱셈 연산을 고려한 고속 역변환 방법)

  • Hyeonju Song;Yung-Lyul Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.100-108
    • /
    • 2023
  • In hybrid block-based video coding, transform coding converts spatial domain residual signals into frequency domain data and concentrates energy in a low frequency band to achieve a high compression efficiency in entropy coding. The state-of-the-art video coding standard, VVC(Versatile Video Coding), uses DCT-2(Discrete Cosine Transform type 2), DST-7(Discrete Sine Transform type 7), and DCT-8(Discrete Cosine Transform type 8) for primary transform. In this paper, considering that DCT-2, DST-7, and DCT-8 are all linear transformations, we propose an inverse transform that reduces the number of multiplications in the inverse transform by using the linearity of the linear transform. The proposed inverse transform method reduced encoding time and decoding time by an average 26%, 15% in AI and 4%, 10% in RA without the increase of bitrate compared to VTM-8.2.

A Study on Scenario-based Urban Flood Prediction using G2D Flood Analysis Model (G2D 침수해석 모형을 이용한 시나리오 기반 도시 침수예측 연구)

  • Hui-Seong Noh;Ki-Hong Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.488-494
    • /
    • 2023
  • In this paper, scenario-based urban flood prediction for the entire Jinju city was performed, and a simulation domain was constructed using G2D as a 2-dimensional urban flood analysis model. The domain configuration is DEM, and the land cover map is used to set the roughness coefficient for each grid. The input data of the model are water level, water depth and flow rate. In the simulation of the built G2D model, virtual rainfall (3 mm/10 min rainfall given to all grids for 5 hours) and virtual flow were applied. And, a GPU acceleration technique was applied to determine whether to run the flood analysis model in the target area. As a result of the simulation, it was confirmed that the high-resolution flood analysis time was significantly shortened and the flood depth for visual flood judgment could be created for each simulation time.

Anti-SARS-CoV-2 receptor binding domain antibodies after the second dose of Sinovac and AstraZeneca vaccination

  • Marisca Evalina Gondokesumo;Anita Purnamayanti;Puri Safitri Hanum;Winnie Nirmala Santosa;Ardyan Prima Wardhana;Christina Avanti
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.224-231
    • /
    • 2023
  • Purpose: The Sinovac and AstraZeneca vaccines are the primary coronavirus disease 2019 vaccines in Indonesia. Antibody levels in vaccine-injected individuals will decline substantially over time, but data supporting the duration of such responses are limited. Therefore, this study aims to quantitatively evaluate antibody responses resulting from the completion of Sinovac and AstraZeneca administration in Indonesian adults. Materials and Methods: Participants were divided into two groups based on their vaccine type. Both groups were then assessed on the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (anti-SRBD) concentrations. The anti-SRBD level was measured using Elecsys anti-SARS-CoV-2 S assay and analyzed every month until 3 months after the second vaccination. Results: The results presented significant differences (p=0.000) in immunoglobulin G (IgG) titers among the vaccines' measurement duration, where all samples observed a decrease in IgG titers over time. The mean titer levels of anti-SRBD IgG in the group given Sinovac were high in the first month after vaccination and decreased by 55.7% in 3 months. AstraZeneca showed lesser immune response with a slower decline rate. Adverse effects following immunization (AEFI) showed that systemic reactions are the most reported in both vaccines, with a higher percentage in the second dose of AstraZeneca type vaccines. Conclusion: Sinovac induced more significant titers of anti-SRBD IgG 1 month after the second dose but generated fewer AEFIs. In contrast, AstraZeneca generated more AEFIs, in mild to moderate severity, but provided lower levels of anti-SRBD IgG.

An Improved Fractal Color Image Decoding Based on Data Dependence and Vector Distortion Measure (데이터 의존성과 벡터왜곡척도를 이용한 개선된 프랙탈 칼라영상 복호화)

  • 서호찬;정태일;류권열;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.3
    • /
    • pp.289-296
    • /
    • 1999
  • In this paper, an improved fractal color image decoding method using the data dependence parts and the vector distortion measure is proposed. The vector distortion measure exploits the correlation between different color components. The pixel in RGB color space can be considered as a 30dimensional vector with elements of RGB components. The root mean square error(rms) in RGB color for similarity measure of two blocks R and R' was used. We assume that various parameter necessary in image decoding are stored in the transform table. If the parameter is referenced in decoding image, then decoding is performed by the recursive decoding method. If the parameter is not referenced in decoding image, then the parameters recognize as the data dependence parts and store its in the memory. Non-referenced parts can be decoded only one time, because its domain informations exist in the decoded parts by the recursive decoding method. Non-referenced parts are defined the data dependence parts. Image decoding method using data dependence classifies referenced parts and non-referenced parts using information of transform table. And the proposed method can be decoded only one time for R region decoding speed than Zhang & Po's method, since it is decreased the computational numbers by execution iterated contractive transformations for the referenced range only.

  • PDF

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.

Ubiquitous-Based Mobile Control and Monitoring of CNC Machines for Development of u-Machine

  • Kim Dong-Hoon;Song Jun-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.455-466
    • /
    • 2006
  • This study was an attempt to control and monitor Computerized Numerical Controller (CNC) machines anywhere and anytime for the development of a ubiquitous machine (u-machine). With a Personal Digital Assistant (PDA) phone, the machine status and machining data of CNC machines can be monitored in wired and wireless environments, including the environments of IMT2000 and Wireless LAN. Moreover, CNC machines can be controlled anywhere and anytime. The concept of the anywhere-anytime controlling and monitoring of a manufacturing system was implemented in this study for the purpose of u-manufacturing and u-machines. In this concept, the communication between the CNC controller and the PDA phone was successfully performed anywhere and anytime for the real-time monitoring and control of CNC machines. In addition, the interface between the CNC controller and the developed application module was implemented by Object linking and embedding for Process Control (OPC) and shared CNC memory. For communication, the design of a server contents module within the target CNC was based on a TCP/IP. Furthermore, the client contents module within the PDA phone was designed with the aid of embedded c++ programming for mobile communication. For the interface, the monitoring data, such as the machine status, the machine running state, the name of the Numerical Control (NC) program, the alarm and the position of the stage axes, were acquired in real time from real machines with the aid of the OPC method and by sharing the CNC memory. The control data, such as the start, hold, emergency stop, reserved start and reserved stop, were also applied to the CNC domain of the real machine. CNC machines can therefore be controlled and monitored in real time, anywhere and anytime. Moreover, prompt notification from CNC machines to mobile phones, including cellular phones and PDA phones, can be automatically realized in emergencies.

Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition

  • Seongi Min;Kiwon Jeong;Yunwoo Lee;Donghwi Jung;Seungjun Kim
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • The submerged floating tunnel (SFT) is tethered by mooring lines anchored to the seabed, therefore, the structural integrity of the anchor should be sensitively managed. Despite their importance, reaction forces cannot be simply measured by attaching sensors or load cells because of the structural and environmental characteristics of the submerged structure. Therefore, we propose an effective method for estimating the reaction forces at the seabed anchor of a submerged floating tunnel using a structural pattern model. First, a structural pattern model is established to use the correlation between tunnel motion and anchor reactions via a deep learning algorithm. Once the pattern model is established, it is directly used to estimate the reaction forces by inputting the tunnel motion data, which can be directly measured inside the tunnel. Because the sequential characteristics of responses in the time domain should be considered, the long short-term memory (LSTM) algorithm is mainly used to recognize structural behavioral patterns. Using hydrodynamics-based simulations, big data on the structural behavior of the SFT under various waves were generated, and the prepared datasets were used to validate the proposed method. The simulation-based validation results clearly show that the proposed method can precisely estimate time-series reactions using only acceleration data. In addition to real-time structural health monitoring, the proposed method can be useful for forensics when an unexpected accident or failure is related to the seabed anchors of the SFT.

Noise Control Boundary Image Matching Using Time-Series Moving Average Transform (시계열 이동평균 변환을 이용한 노이즈 제어 윤곽선 이미지 매칭)

  • Kim, Bum-Soo;Moon, Yang-Sae;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.327-340
    • /
    • 2009
  • To achieve the noise reduction effect in boundary image matching, we use the moving average transform of time-series matching. Our motivation is based on an intuition that using the moving average transform we may exploit the noise reduction effect in boundary image matching as in time-series matching. To confirm this simple intuition, we first propose $\kappa$-order image matching, which applies the moving average transform to boundary image matching. A boundary image can be represented as a sequence in the time-series domain, and our $\kappa$-order image matching identifies similar images in this time-series domain by comparing the $\kappa$-moving average transformed sequences. Next, we propose an index-based matching method that efficiently performs $\kappa$-order image matching on a large volume of image databases, and formally prove the correctness of the index-based method. Moreover, we formally analyze the relationship between an order $\kappa$ and its matching result, and present a systematic way of controlling the noise reduction effect by changing the order $\kappa$. Experimental results show that our $\kappa$-order image matching exploits the noise reduction effect, and our index-based matching method outperforms the sequential scan by one or two orders of magnitude.

Disproportional Insertion Policy for Improving Query Performance in RFID Tag Data Indices (RFID 태그 데이타 색인의 질의 성능 향상을 위한 불균형 삽입 정책)

  • Kim, Gi-Hong;Hong, Bong-Hee;Ahn, Sung-Woo
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.432-446
    • /
    • 2008
  • Queries for tracing tag locations are among the most challenging requirements in RFID based applications, including automated manufacturing, inventory tracking and supply chain management. For efficient query processing, a previous study proposed the index scheme for storing tag objects, based on the moving object index, in 3-dimensional domain with the axes being the tag identifier, the reader identifier, and the time. In a different way of a moving object index, the ranges of coordinates for each domain are quite different so that the distribution of query regions is skewed to the reader identifier domain. Previous indexes for tags, however, do not consider the skewed distribution for query regions. This results in producing many overlaps between index nodes and query regions and then causes the problem of traversing many index nodes. To solve this problem, we propose a new disproportional insertion and split policy of the index for RFID tags which is based on the R*-tree. For efficient insertion of tag data, our method derives the weighted margin for each node by using weights of each axis and margin of nodes. Based the weighted margin, we can choose the subtree and the split method in order to insert tag data with the minimum cost. Proposed insertion method also reduces the cost of region query by reducing overlapped area of query region and MBRs. Our experiments show that the index based on the proposed insertion and split method considerably improves the performance of queries than the index based on the previous methods.