Estimation of the evoked potential using the iterated bispectrum and cross-correlation (IBC) has been tried for both simulation and real clinical data. Conventional time average (TA) method suffers from synchronization error when the latency time of the evoked potential is random, which results in poor SNR distortion in the estimation of EP waveform. Instead of EP signal average in time domain, bispectrum is used which is insensitive to time delay. The EP signal is recovered by the inverse transform of the Fourier amplitude and phase obtained from the bispectrum. The distribution of the latency time is calculated using cross-correlation between EP signal estimated by the bispectrum and the acquired signal. For the simulation. EEG noise was added to the known EP signal and the EP signal was estimated by both the conventional technique and bispectrum technique. The proposed bispectrum technique estimates EP signal more accurately than the conventional technique with respect to the maximum amplitude of a signal, full width at half maximum(FWHM). signal-to-noise-ratio, and the position of maximum peak. When applied to the real visual evoked potential(VEP) signal. bispectrum technique was able to estimate EP signal more distinctively. The distribution of the latency time may play an important role in medical diagonosis.
Tower insulators in electric power transmission network play a crucial role in preserving the reliability of the system. Electrical utilities frequently face the problem of flashover of insulators due to pollution deposition on their surface. Several research works based on leakage current (LC) measurement has been already carried out in developing diagnostic techniques for these insulators. Since the LC signal is highly intermittent in nature, estimation of pollution severity based on LC signal measurement over a short period of time will not produce accurate results. Reports on the measurement and analysis of LC signals over a long period of time is scanty. This paper attempts to use Random Forest (RF) classifier, which produces accurate results on large data bases, to analyze the pollution severity of high voltage tower insulators. Leakage current characteristics over a long period of time were measured in the laboratory on porcelain insulator. Pollution experiments were conducted at 11 kV AC voltage. Time domain analysis and wavelet transform technique were used to extract both basic features and histogram features of the LC signal. RF model was trained and tested with a variety of LC signals measured over a lengthy period of time and it is noticed that the proposed RF model based pollution severity classifier is efficient and will be helpful to electrical utilities for real time implementation.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.12
no.7
/
pp.1147-1156
/
2001
In this paper, a new design architecture of radar signal processor in real time is proposed. It has been designed and implemented under the consideration to minimize the inter-processor communication overhead and to maintain the coherence in Doppler pulse domain and in range domain. Its structure can be easily reconfigured and reprogrammed in accordance with an addition of function algorithm or a modification of operational scenario. As we designed a task configuration for parallel processing from measures of computation time for function algorithms and transmission time for results by signal processing, data exchange between processors for performing of function algorithms could be fully removed. Morocco-2 board equipped ADSP-21060 processor of Analog Devices inc. and APEX-3.2 developed for SHARC DSP were used to construct the radar signal processor.
International conference on construction engineering and project management
/
2022.06a
/
pp.831-838
/
2022
Machine Learning is a process of using computer algorithms to extract information from raw data to solve complex problems in a data-rich environment. It has been used in the construction industry by both academics and practitioners for multiple applications to improve the construction process. The Construction Industry Institute, a leading construction research organization has twenty-five years of experience in benchmarking capital projects in the industry. The organization is at an advantage to develop useful machine learning applications because it possesses enormous real construction data. Its benchmarking programs have been actively used by owner and contractor companies today to assess their capital projects' performance. A credible benchmarking program requires statistically valid data without subjective interference in the program administration. In developing the next-generation benchmarking program, the Data Warehouse, the organization aims to use machine learning algorithms to minimize human effort and to enable rapid data ingestion from diverse sources with data validity and reliability. This research effort uses a focus group comprised of practitioners from the construction industry and data scientists from a variety of disciplines. The group collaborated to identify the machine learning requirements and potential applications in the program. Technical and domain experts worked to select appropriate algorithms to support the business objectives. This paper presents initial steps in a chain of what is expected to be numerous learning algorithms to support high-performance computing, a fully automated performance benchmarking system.
The skyline query is one of the effective methods to deal with the large amounts and multi-dimensional data set. By utilizing the concept of 'dominate' the skyline query can pinpoint the target data so that the dominated ones, about 95% of them, can efficiently be excluded as an unnecessary data. Most of the skyline query algorithms, however, have been developed in terms of the numerical data set. This paper pioneers an entirely new domain, the categorical data, on which the corresponding ranking measures for the skyline queries are suggested. In the experiment, the ACM Computing Classification System has been exploited to which our methods are significantly represented with respect to performance thresholds such as the processing time and precision ratio, etc.
With the rapid interest in Geographic Information System (GIS) contents, a large volume of valuable GIS dataset has been distributed illegally by pirates, hackers, or unauthorized users. Therefore the problem focus on how to protect the copyright of GIS vector map data for storage and transmission. But GIS vector map data is very large and current data encryption techniques often encrypt all components of data. That means we have encrypted large amount of data lead to the long encrypting time and high complexity computation. This paper presents the selective encryption scheme using hybrid transform for GIS vector map data protection to store, transmit or distribute to authorized users. In proposed scheme, polylines and polygons in vector map are targets of selective encryption. We select the significant objects in polyline/polygon layer, and then they are encrypted by the key sets generated by using Chaotic map before changing them in DWT, DFT domain. Experimental results verified the proposed algorithm effectively and error in decryption is approximately zero.
Due to the proliferation of the Internet and intranet, a new application domain called stream data processing has emerged. Stream data is real-timely and continuously generated. In this paper, we focus on the processing of stream data whose characteristics vary unpredictably by over time. Particularly, we suggest a method which generates an efficient operator execution order called WT-Heuristics. WT-Heuristics efficiently determines the operator execution order since it considers only two adjacent operators in the operator execution order. Also, our method changes the execution order with respect to the change of data characteristics with minimum overheads.
Recent technological advances provide the opportunity to use large amounts of multimedia data from a multitude of sensors with different modalities (e.g., video, text) for the detection and characterization of criminal activity. Their integration can compensate for sensor and modality deficiencies by using data from other available sensors and modalities. However, building such an integrated system at the scale of neighborhood and cities is challenging due to the large amount of data to be considered and the need to ensure a short response time to potential criminal activity. In this paper, we present a system that enables multi-modal data collection at scale and automates the detection of events of interest for the surveillance and reconnaissance of criminal activity. The proposed system showcases novel analytical tools that fuse multimedia data streams to automatically detect and identify specific criminal events and activities. More specifically, the system detects and analyzes series of incidents (an incident is an occurrence or artifact relevant to a criminal activity extracted from a single media stream) in the spatiotemporal domain to extract events (actual instances of criminal events) while cross-referencing multimodal media streams and incidents in time and space to provide a comprehensive view to a human operator while avoiding information overload. We present several case studies that demonstrate how the proposed system can provide law enforcement personnel with forensic and real time tools to identify and track potential criminal activity.
The purpose of this study is to analyze the ground reaction force of arm landing on arm and leg during sports aerobics. Subjects of this study were total 10 players of 5 males and 5 females who have are domain sports aerobics medalists more than the third place in national tournaments. The subjects jumped between the two ground reaction force analyzers, while landing their right hand on the front platform(#1) and their right leg on the rear platform(#2), and the data frequency was set to 200Hz. Findings of this study are as follows; More than 3 times of impact peak force of vertical reaction force acted on arm joint than on leg joint. And, when ground reaction force on foot increased, ground reaction force on hand decreased. 3 impact peaks of curve of ground reaction force were found - Impact Peak 1 incurred on the time the palm lands on the ground, Impact Peak 2 absorbing shock secondarily on wrist joint, and Active Peak incurred on the time of holding the weight while pushing out the severly bent elbow joint.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.28
no.3
/
pp.84-90
/
2014
The partial discharge of Cast-resin Transformer has a difficulty to be analyzed, because it is an abnormal condition signal of which stochastic characteristics varies with time variance. In this study, background noise coming from the outside of the cast-resin transformers through ground wire can be removed and only a discharge signal of which defects are simulated can be obtained, using the wavelet transform method, which is a time-frequency domain analysis technique. As a result, it was confirmed that de-noising using the SWT technique is the best efficient among three methods of the wavelet transform techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.