• Title/Summary/Keyword: time domain data

Search Result 1,309, Processing Time 0.032 seconds

Advances in the design of high-rise structures by the wind tunnel procedure: Conceptual framework

  • Simiu, Emil;Yeo, DongHun
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.489-503
    • /
    • 2015
  • This paper surveys and complements contributions by the National Institute of Standards and Technology to techniques ensuring that the wind tunnel procedure for the design of high-rise structures is based on sound methods and allows unambiguous inter-laboratory comparisons. Developments that enabled substantial advances in these techniques include: Instrumentation for simultaneously measuring pressures at multiple taps; time-domain analysis methods for estimating directional dynamic effects; creation of large simulated extreme directional wind speed data sets; non-parametric methods for estimating mean recurrence intervals (MRIs) of Demand-to-Capacity Indexes (DCIs); and member sizing based on peak DCIs with specified MRIs. To implement these advances changes are needed in the traditional division of tasks between wind and structural engineers. Wind engineers should provide large sets of directional wind speeds, pressure coefficient time series, and estimates of uncertainties in wind speeds and pressure coefficients. Structural engineers should perform the dynamic analyses, estimates of MRIs of wind effects, sensitivity studies, and iterative sizing of structural members. The procedure is transparent, eliminates guesswork inherent in frequency domain methods and due to the lack of pressure measurements, and enables structural engineers to be in full control of the structural design for wind.

Design of a Channel Estimator for the LTE System Based on the Multirate Signal Processing (다속신호처리 기법을 이용한 LTE 시스템 채널 추정기법 설계)

  • Yoo, Kyung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2108-2113
    • /
    • 2010
  • The Long Term Evolution (LTE) system is based on the Orthogonal Frequency Division Multiplexing (OFDM) and relies its channel estimation on the lattice-type pilot samples in the multipath fading channel environment. The estimation of the channel frequency response (CFR) makes use of the least squares estimate (LSE) for each pilot samples, followed by an interpolation both in time- and in frequency-domain to fill up the channel estimates for subcarriers corresponding to data samples. Any interpolation scheme could be adopted for this purpose. Depending on the requirements of the target system, we may choose a simple linear interpolation or a sophisticated one. For any choice of an interpolation scheme, these is a trade-off between estimation accuracy and numerical cost. For those wireless communication systems based on the OFDM and the preamble-type pilot structure, the DFT-based channel estimation and its variants have been successfully. Yet, it may not be suitable for the lattice-type pilot structure, since the pilot samples are not sufficient to provide an accurate estimate and it is known to be sensitive to the location as well as the length of the time-domain window. In this paper, we propose a simple interpolated based on the upsampling mechanism in the multirate signal processing. The proposed method provides an excellent alternative to the DFT-based methods in terms of numerical cost and accuracy. The performance of the proposed technique is verified on a multipath environment suggested on a 3GPP LTE specification.

A study on the progressive tool wear and acoustic emission signals in milling process (밀링가공시 발생하는 공구마멸과 AE신호에 관한 연구)

  • 황홍연;이병찬;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1035-1042
    • /
    • 1988
  • The acoustic emission(AE) signal is monitored in milling operation in order to investigate the relationship between the progressive tool wear and the AE signals. A signal processing technique so called time domain averaging(TDA) is presented for the elimination of the influences of the noise imbedded in the periodic signals. The relationship between the progressive tool wear and the AE signals is investigated by varying the cutting speed, feed, depth of cut and the number of insert. From the measured data, it is observed that the averaged level of the AE signal increases at first with the increase of flank wear to a certain critical value, and then stays almost constant or fluctuates with further increase of the flank wear.

NDE Inspecting Techniques for Wind Turbine Blades Using Terahertz Waves (테라헤르츠파를 이용한 풍력터빈 블레이드 NDE 탐상 평가기법)

  • Im, Kwang-Hee;Kim, Sun-Kyu;Jung, Jong-An;Cho, Young-Tae;Woo, Yong-Deuck
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Terahertz waves (T-ray) was extensively studied for the NDE (nondestructive evaluation) of characterization of trailing edges for a use of turbines composed with composite materials. The used NDE system were consisted of both CW(Continuous wave) and TDS (Time domain spectroscopy). The FRP composites were utilized for two kinds of both trailing edges of wind energy (non-conducting polymeric composites) and carbon fiber composites with conducting properties. The signals of T-ray in the TDS (Time domain spectroscopy) mode resembles almost that of ultrasound waves; however, a terahertz pulse could not penetrate a material with conductivity unlike ultrasound. Also, a method was suggested to obtain the "n" in the materials, which is called the refractive index (n). The data of refractive index (n) could be solved for the trailing edges. The trailing edges were scanned for characterization and inspection. C-scan and B-scan images were obtained and best optimal NDE techniques were suggested for complicated geometry samples by terahertz radiation. Especially, it is found that the defect image of T-ray corresponded with defect locations for the trailing edges of wind mill.

SCUBA-2 Observation of the JWST/GTO Time Domain Survey Field

  • Hyun, Minhee;Smail, Ian;Im, Myungshin;Windhorst, Roger A.;Jansen, Rolf A.;Wilmer, Christopher N.A.;Cotton, William D.;Fazio, Giovanni;Perley, Richard;Condon, James J.;Swinbank, Mark;Cohen, Seth;Lin, Li-Hwai;An, Fangxia;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.35.3-36
    • /
    • 2020
  • The Time Domain Field is one of the future GTO program fields of JWST(JWST/GTO TDS), surveying about 14' diameter field at the North Eliptical Pole(NEP) with NIRCam/NIRISS. As a part of the multi-wavelength study of the field, we have obtained SCUBA-2 850㎛ mapping which reaches a depth of σrms = 0.9mJy/beam and detect 93 sources at S/N > 3.5 ― which are expected to be highly star-forming (SFR>400M◉/yr) galaxies at z ≳ 1.5-4 and pinpoint the location at <0. " 1 accuracy of 68 sub-mm sources by identifying VLA 3GHz radio counterparts. In this talk, we will introduce the SCUBA-2 JWST/GTO TDS project and the newly discovered sub-mm sources in this field.

  • PDF

Secure Routing with Time-Space Cryptography for Mobile Ad-Hoc Networks (이동 애드혹 망을 위한 시공간 방식의 보안 라우팅 프로토콜)

  • Joe, In-Whee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the design and performance of a secure routing protocol with time-space cryptography for mobile ad-hoc networks. The proposed time-space scheme works in the time domain for key distribution between source and destination as well as in the space domain for intrusion detection along the route between them. For data authentication, it relies on the symmetric key cryptography due to high efficiency and a secret key is distributed using a time difference from the source to the destination. Also, a one-way hash chain is formed on a hop-by-hop basis to prevent a compromised node or an intruder from manipulating the routing information. In order to evaluate the performance of our routing protocol, we compare it with the existing AODV protocol by simulation under the same conditions. The proposed protocol has been validated using the ns-2 network simulator with wireless and mobility extensions.

Development of the Continuous-Time HGDM with Binomial Sensitivity Factor (이항 반응 계수를 가진 연속 시간형 HGDM의 개발)

  • Park, Joong-Yang;Kim, Seong-Hee;Park, Jae-Heong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3490-3499
    • /
    • 1999
  • The hyper-geometric distribution software reliability growth model (HGDM) was recently developed and successfully applied to the problem of estimating the number of initial faults residual in a software at the beginning of the test-and-debug phase. Though the HGDM is a time-domain software reliability growth model(SRGM), it is not possible to compare the HGDM with other time-domain SRGMs. Furthermore the usual software reliability can not be computed. These drawbacks are derived from fact that the HGDM is not described in terms of the execution time. Thus we develop a continuous-time HGDM with binomial sensitivity factor in order to remove these drawbacks. Statistical characteristics of the suggested model are studied and its applicability is then examined by analyzing real test data sets. It is empirically shown that the continuous-time HGDM with binomial sensitivity factor can be used as an alternative to the current HGDM.

  • PDF

Performance Analysis of OFDM-based Underwater Acoustic Communication System by Repeated Transmit Diversity Technique (반복 전송 다이버시티 기법에 따른 OFDM 기반 수중 음향 통신 시스템의 실해역 성능 분석)

  • Chae, Kwang-Young;Ko, Hak-Lim;Kim, Min-Sang;Cho, Yong-Ho;Im, Tae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1434-1442
    • /
    • 2019
  • In this paper, the channel change was continuously measured for 24 hours from July 5, 2017 on the coast near Deokjeok-do, Incheon. The underwater channel has various channel environment characteristics as the change in the time axis and the change in the frequency axis occurs in real time, and the underwater communication performance decreases due to the multipath fading and the Doppler effect. Therefore, in this study, we performed the OFDM system performance analysis in the underwater channel environment by applying the repetitive transmission diversity scheme in the time and frequency domain to improve the communication performance in the real-world underwater communication environment. Using the collected data, we compared the channel environment in the time and frequency domain and analyzed the BER performance according to the pilot spacing and the number of repetitive transmissions in the time and frequency axis.

Investigation of characteristic values in TDR waveform using SHapley Additive exPlanations (SHAP) for dielectric constant estimation during curing time

  • Won-Taek Hong;WooJin Han;Yong-Hoon Byun;Hyung-Koo Yoon
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • As materials cure, the internal electrical flow changes, leading to variations in the dielectric constant over time. This study aims to assess the impact of voltage values extracted from time domain reflectometry (TDR) waveforms, measured during the curing of materials, on predicting the dielectric constant. The experiments are conducted over a curing period ranging from 60 to 8640 minutes, with 30 TDR trials. From the measured waveforms, values of V0, V1, V2, Vf, and Δt are deduced. Additionally, curing time is included as an input variable. Groups A and B are distinguished based on the presence or absence of Δt, indicating a physical relationship between Δt and the dielectric constant. The dielectric constant is set as the output variable. The SHapley Additive exPlanations (SHAP) algorithm is applied to the compiled data. The results indicate that Δt and V1 are the most influential input variables in both Group-A and Group-B. The study also presents the distribution of SHAP values and interacts SHAP values to infer the interrelationships among the input variables. To validate the reliability of these findings, the partial dependence (PD) algorithm is applied to estimate the marginal effects of each input variable, with outcomes closely aligning with those of the SHAP algorithm. This research suggests that understanding the contributions and proportional relationships of each input variable can aid in interpreting the relationships among various material properties.

Efficiency Enhancement of CFDS Code (CFDS 코드의 효율성 개선)

  • Kim J. G.;Lee J.;Kim C.;Hong S. K.;Lee K. S.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.123-127
    • /
    • 2005
  • The numerical analyses of the complicated flows are widely attempted in these days. Because of the enormous demanding memory and calculation time, parallel processing is used for these problems. In order to obtain calculation efficiency, it is important to choose proper domain decomposition technique and numerical algorithm. In this research we enhanced the efficiency of the CFDS code developed by ADD, using parallel computation and newly developed numerical algorithms. For the huge amount of data transfer between blocks non-blocking method is used, and newly developed data transfer algorithm is used for non-aligned block interface. Recently developed RoeM scheme is adpoted as a spatial difference method, and AF-ADI and LU-SGS methods are used as a time integration method to enhance the convergence of the code. Analyses of the flows around the ONERA M6 wing and the high angle of attack missile configuration are performed to show the efficiency improvement.

  • PDF