• Title/Summary/Keyword: time domain data

Search Result 1,310, Processing Time 0.03 seconds

Fault Detection Technique for PVDF Sensor Based on Support Vector Machine (서포트벡터머신 기반 PVDF 센서의 결함 예측 기법)

  • Seung-Wook Kim;Sang-Min Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • In this study, a methodology for real-time classification and prediction of defects that may appear in PVDF(Polyvinylidene fluoride) sensors, which are widely used for structural integrity monitoring, is proposed. The types of sensor defects appearing according to the sensor attachment environment were classified, and an impact test using an impact hammer was performed to obtain an output signal according to the defect type. In order to cleary identify the difference between the output signal according to the defect types, the time domain statistical features were extracted and a data set was constructed. Among the machine learning based classification algorithms, the learning of the acquired data set and the result were analyzed to select the most suitable algorithm for detecting sensor defect types, and among them, it was confirmed that the highest optimization was performed to show SVM(Support Vector Machine). As a result, sensor defect types were classified with an accuracy of 92.5%, which was up to 13.95% higher than other classification algorithms. It is believed that the sensor defect prediction technique proposed in this study can be used as a base technology to secure the reliability of not only PVDF sensors but also various sensors for real time structural health monitoring.

The Development and Validation of Instructional Strategies Using the Advanced Laboratory Equipment(ALE) in Science High School Chemistry Classrooms: A Focus of UV-Visible and IR Spectrophotometer (과학고등학교 화학수업에서 첨단과학 실험기기 활용 수업 전략의 개발 및 타당화: 자외선-가시광선 및 적외선 분광기를 중심으로)

  • Jeon, Kyunghee;Park, Dahye;Jang, Nakhan;Park, Jongwook;Park, Jongseok
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.69-81
    • /
    • 2016
  • The purpose of this study was to find out the validation of instructional strategies using the Advanced Laboratory Equipment (ALE class) by investigating science high school students’ perception on ALE in chemistry classrooms and to consider the need for development of teaching materials on ALE class. 7 sessions of ALE including experiments with innovative equipment were developed and applied to 21 students in D Science High School. At the end of the sessions, questionnaire was given to the students. We also collected qualitative data by interviewing 9 students who participated in the questionnaire. We analyzed the data collected by In-depth interviews and students’ experimental reports. The result showed that ALE class was effective to enhance students’ understanding of learning concepts because the experimental time was shortened in real time data processing. Some students showed creative performance on solving scientific problems by using everyday materials in experimental process and developed perceptions of practical inquiry. Through this process, students’ positive attitudes and interests in science and heuristic inquiry skills were also enhanced. Developing ALE lesson materials will be helpful for students to understand science and technology and the domain of science in broader contexts.

A Comparative Study of Block Chain : Bitcoin·Namecoin·MediBloc (블록체인 비교연구: 비트코인·네임코인·메디블록)

  • Kim, Ji Yeon
    • Journal of Science and Technology Studies
    • /
    • v.18 no.3
    • /
    • pp.217-255
    • /
    • 2018
  • Bitcoin, which appeared in 2008, was merely a conceptual virtual currency, but it now enjoys the status as actual money. Bitcoin is an electronic money system that can be traded directly without a central trust institution. Thanks to the popularization of Bitcoin, blockchain technology has become a widespread concern. That technology is expanding not only the currency mechanism, but also a variety of other services. The possibility of a blockchain in relation to actual currency is ongoing. This paper investigates the technological characteristics and social construction of the blockchain by comparing the cases of Bitcoin, Namecoin, and MediBloc among blockchain applications. Namecoin emerged in 2013 is an attempt to replace the centralized Internet Domain Name System(DNS). There has been controversy over that current system for a long time, but replacing the already established system is not easy. Nevertheless, Namecoin has potential as an alternative. Meanwhile, MediBloc is an application that involves distributed management of medical data in South Korea. MediBloc claims that the key producers of medical data are patients themselves. This is to challenge to the question who is a knowledge producer of medical data. Through these three cases, it has discussed that blockchain technology does supports to form more democratic decision-making or simply provide a technical solution as automation. As a citizen, we can intervene in the realization of blockchains by presenting social agenda. This will be a method of the social construction of technology.

Selectively Partial Encryption of Images in Wavelet Domain (웨이블릿 영역에서의 선택적 부분 영상 암호화)

  • ;Dujit Dey
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.648-658
    • /
    • 2003
  • As the usage of image/video contents increase, a security problem for the payed image data or the ones requiring confidentiality is raised. This paper proposed an image encryption methodology to hide the image information. The target data of it is the result from quantization in wavelet domain. This method encrypts only part of the image data rather than the whole data of the original image, in which three types of data selection methodologies were involved. First, by using the fact that the wavelet transform decomposes the original image into frequency sub-bands, only some of the frequency sub-bands were included in encryption to make the resulting image unrecognizable. In the data to represent each pixel, only MSBs were taken for encryption. Finally, pixels to be encrypted in a specific sub-band were selected randomly by using LFSR(Linear Feedback Shift Register). Part of the key for encryption was used for the seed value of LFSR and in selecting the parallel output bits of the LFSR for random selection so that the strength of encryption algorithm increased. The experiments have been performed with the proposed methods implemented in software for about 500 images, from which the result showed that only about 1/1000 amount of data to the original image can obtain the encryption effect not to recognize the original image. Consequently, we are sure that the proposed are efficient image encryption methods to acquire the high encryption effect with small amount of encryption. Also, in this paper, several encryption scheme according to the selection of the sub-bands and the number of bits from LFSR outputs for pixel selection have been proposed, and it has been shown that there exits a relation of trade-off between the execution time and the effect of the encryption. It means that the proposed methods can be selectively used according to the application areas. Also, because the proposed methods are performed in the application layer, they are expected to be a good solution for the end-to-end security problem, which is appearing as one of the important problems in the networks with both wired and wireless sections.

Towards remote sensing of sediment thickness and depth to bedrock in shallow seawater using airborne TEM (항공 TEM 을 이용한 천해지역에서의 퇴적층 두께 및 기반암 심도 원격탐사에 관하여)

  • Vrbancich, Julian;Fullagar, Peter K.
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 2007
  • Following a successful bathymetric mapping demonstration in a previous study, the potential of airborne EM for seafloor characterisation has been investigated. The sediment thickness inferred from 1D inversion of helicopter-borne time-domain electromagnetic (TEM) data has been compared with estimates based on marine seismic studies. Generally, the two estimates of sediment thickness, and hence depth to resistive bedrock, were in reasonable agreement when the seawater was ${\sim}20\;m$ deep and the sediment was less than ${\sim}40\;m$ thick. Inversion of noisy synthetic data showed that recovered models closely resemble the true models, even when the starting model is dissimilar to the true model, in keeping with the uniqueness theorem for EM soundings. The standard deviations associated with shallow seawater depths inferred from noisy synthetic data are about ${\pm}5\;%$ of depth, comparable with the errors of approximately ${\pm}1\;m$ arising during inversion of real data. The corresponding uncertainty in depth-to-bedrock estimates, based on synthetic data inversion, is of order of ${\pm}10\;%$. The mean inverted depths of both seawater and sediment inferred from noisy synthetic data are accurate to ${\sim}1\;m$, illustrating the improvement in accuracy resulting from stacking. It is concluded that a carefully calibrated airborne TEM system has potential for surveying sediment thickness and bedrock topography, and for characterising seafloor resistivity in shallow coastal waters.

Bitmap Indexes and Query Processing Strategies for Relational XML Twig Queries (관계형 XML 가지 패턴 질의를 위한 비트맵 인덱스와 질의 처리 기법)

  • Lee, Kyong-Ha;Moon, Bong-Ki;Lee, Kyu-Chul
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.146-164
    • /
    • 2010
  • Due to an increasing volume of XML data, it is considered prudent to store XML data on an industry-strength database system instead of relying on a domain specific application or a file system. For shredded XML data stored in relational tables, however, it may not be straightforward to apply existing algorithms for twig query processing, since most of the algorithms require XML data to be accessed in a form of streams of elements grouped by their tags and sorted in a particular order. In order to support XML query processing within the common framework of relational database systems, we first propose several bitmap indexes and their strategies for supporting holistic twig joining on XML data stored in relational tables. Since bitmap indexes are well supported in most of the commercial and open-source database systems, the proposed bitmapped indexes and twig query processing strategies can be incorporated into relational query processing framework with more ease. The proposed query processing strategies are efficient in terms of both time and space, because the compressed bitmap indexes stay compressed during data access. In addition, we propose a hybrid index which computes twig query solutions with only bit-vectors, without accessing labeled XML elements stored in the relational tables.

A Rational Ground Model and Analytical Methods for Numerical Analysis of Ground-Penetrating Radar (GPR) (GPR 수치해석을 위한 지반 모형의 합리적인 모델링 기법 및 분석법 제안)

  • Lee, Sang-Yun;Song, Ki-Il;Park, June-Ho;Ryu, Hee-Hwan;Kwon, Tae-Hyuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.49-60
    • /
    • 2024
  • Ground-penetrating radar (GPR) enables rapid data acquisition over extensive areas, but interpreting the obtained data requires specialized knowledge. Numerous studies have utilized numerical analysis methods to examine GPR signal characteristics under various conditions. To develop more realistic numerical models, the heterogeneous nature of the ground, which causes clutter, must be considered. Clutter refers to signals reflected by objects other than the target. The Peplinski material model and fractal techniques can simulate these heterogeneous characteristics, yet there is a shortage of research on the necessary input parameters. Moreover, methods for quantitatively evaluating the similarity between field and analytical data are not well established. In this study, we calculated the autocorrelation coefficient of field data and determined the correlation length using the autocorrelation function. The correlation length represented the temporal or spatial distance over which data exhibited similarity. By comparing the correlation length of field data with that of the numerical model incorporating fractal weights, we quantitatively evaluated a numerical model for heterogeneous ground. Consequently, the results of this study demonstrated a numerical modeling technique that reflected the clutter characteristics of the field through correlation length.

Development of an AutoML Web Platform for Text Classification Automation (텍스트 분류 자동화를 위한 AutoML 웹 플랫폼 개발)

  • Ha-Yoon Song;Jeon-Seong Kang;Beom-Joon Park;Junyoung Kim;Kwang-Woo Jeon;Junwon Yoon;Hyun-Joon Chung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.537-544
    • /
    • 2024
  • The rapid advancement of artificial intelligence and machine learning technologies is driving innovation across various industries, with natural language processing offering substantial opportunities for the analysis and processing of text data. The development of effective text classification models requires several complex stages, including data exploration, preprocessing, feature extraction, model selection, hyperparameter optimization, and performance evaluation, all of which demand significant time and domain expertise. Automated machine learning (AutoML) aims to automate these processes, thus allowing practitioners without specialized knowledge to develop high-performance models efficiently. However, current AutoML frameworks are primarily designed for structured data, which presents challenges for unstructured text data, as manual intervention is often required for preprocessing and feature extraction. To address these limitations, this study proposes a web-based AutoML platform that automates text preprocessing, word embedding, model training, and evaluation. The proposed platform substantially enhances the efficiency of text classification workflows by enabling users to upload text data, automatically generate the optimal ML model, and visually present performance metrics. Experimental results across multiple text classification datasets indicate that the proposed platform achieves high levels of accuracy and precision, with particularly notable performance when utilizing a Stacked Ensemble approach. This study highlights the potential for non-experts to effectively analyze and leverage text data through automated text classification and outlines future directions to further enhance performance by integrating Large language models.

Evaluation of Temperature and Precipitation over CORDEX-EA Phase 2 Domain using Regional Climate Model HadGEM3-RA (HadGEM3-RA 지역기후모델을 이용한 CORDEX 동아시아 2단계 지역의 기온과 강수 모의 평가)

  • Byon, Jae-Young;Kim, Tae-Jun;Kim, Jin-Uk;Kim, Do-Hyun
    • Journal of the Korean earth science society
    • /
    • v.43 no.3
    • /
    • pp.367-385
    • /
    • 2022
  • This study evaluates the temperature and precipitation results in East Asia simulated from the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) developed by the UK Met Office. The HadGEM3-RA is conducted in the Coordinated Regional climate Downscaling Experiment-East Asia (CORDEX-EA) Phase II domain for 15 year (2000-2014). The spatial distribution of rainbands produced from the HadGEM3-RA by the summer monsoon is in good agreement with the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APRODITE) data over the East Asia. But, precipitation amount is overestimated in Southeast Asia and underestimated over the Korean Peninsula. In particular, the simulated summer rainfall and APRODITE data show the least correlation coefficient and the maximum value of root mean square error in South Korea. Prediction of temperature in Southeast Asia shows underestimation with a maximum error during winter season, while it appears the largest underestimation in South Korea during spring season. In order to evaluate local predictability, the time series of temperature and precipitation compared to the ASOS data of the Seoul Meteorological Station is similar to the spatial average verification results in which the summer precipitation and winter temperature underestimate. Especially, the underestimation of the rainfall increases when the amounts of precipitation increase in summer. The winter temperature tends to underestimate at low temperature, while it overestimates at high temperature. The results of the extreme climate index comparison show that heat wave is overestimated and heavy rainfall is underestimated. The HadGEM3-RA simulated with a horizontal resolution of 25 km shows limitations in the prediction of mesoscale convective system and topographic precipitation. This study indicates that improvement of initial data, horizontal resolution, and physical process are necessary to improve predictability of regional climate model.

Recognizing the Direction of Action using Generalized 4D Features (일반화된 4차원 특징을 이용한 행동 방향 인식)

  • Kim, Sun-Jung;Kim, Soo-Wan;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.518-528
    • /
    • 2014
  • In this paper, we propose a method to recognize the action direction of human by developing 4D space-time (4D-ST, [x,y,z,t]) features. For this, we propose 4D space-time interest points (4D-STIPs, [x,y,z,t]) which are extracted using 3D space (3D-S, [x,y,z]) volumes reconstructed from images of a finite number of different views. Since the proposed features are constructed using volumetric information, the features for arbitrary 2D space (2D-S, [x,y]) viewpoint can be generated by projecting the 3D-S volumes and 4D-STIPs on corresponding image planes in training step. We can recognize the directions of actors in the test video since our training sets, which are projections of 3D-S volumes and 4D-STIPs to various image planes, contain the direction information. The process for recognizing action direction is divided into two steps, firstly we recognize the class of actions and then recognize the action direction using direction information. For the action and direction of action recognition, with the projected 3D-S volumes and 4D-STIPs we construct motion history images (MHIs) and non-motion history images (NMHIs) which encode the moving and non-moving parts of an action respectively. For the action recognition, features are trained by support vector data description (SVDD) according to the action class and recognized by support vector domain density description (SVDDD). For the action direction recognition after recognizing actions, each actions are trained using SVDD according to the direction class and then recognized by SVDDD. In experiments, we train the models using 3D-S volumes from INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset and recognize action direction by constructing a new SNU dataset made for evaluating the action direction recognition.