• Title/Summary/Keyword: time annealing

Search Result 935, Processing Time 0.024 seconds

Fabrication of branched Ga2O3 nanowires by post annealing with Au seeds

  • Lee, Mi-Seon;Seo, Chang-Su;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.203-203
    • /
    • 2015
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nano-belts, and nano-dots. In contrast to typical vapor-liquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nano-structures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 nanowires (NWs) were synthesized by using radio-frequency magnetron sputtering method. The NWs were then coated by Au thin films and annealed under Ar or N2 gas enviroment with no supply of Gallium and Oxygen source. Several samples were prepared with varying the post annealing parameters such as gas environment annealing time, annealing temperature. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of branched Ga2O3 NWs will be reported.

  • PDF

Optimization of Aerospace Structures using Reseated Simulated Annealing (수정 시뮬레이티드 어닐링에 의한 항공우주 구조물의 최적설계)

  • Ryu, Mi-Ran;Ji, Sang-Hyun;Im, Jong-Bin;Park, Jung-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 2005
  • Rescaled Simulated Annealing(RSA) has been devised for improving the disadvantage of Simulated Annealing(SA) which requires tremendous amount of computation time. RSA and SA have been for optimization of truss and satellite structures and for comparison of results from two algorithms. Ten bar truss structure which has continuous design variables are optimized.. As a practical application, a satellite structure is optimized by the two algorithms. Weights of satellite upper platform and propulsion module are minimized. MSC/NASTRAN is used for the static and dynamic analysis. The optimization results of the RSA are compared with results of the classical SA. The numbers of optimization iterations could be effectively reduced by the RSA.

Surface Morphological Evolution of (0001) α-Al2O3 Substrate During Low Temperature Annealing (저온 열처리 과정에서 일어나는 (0001) α-Al2O3 기판 표면의 형상 변화)

  • Lee, Geun-Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.859-863
    • /
    • 2010
  • Evolution of surface morphology of ${\alpha}-Al_2O_3$ substrate was investigated as a function of annealing temperature and time. Commercial (0001) ${\alpha}-Al_2O_3$ single crystal substrates were annealed in the range of $600-1000^{\circ}C$ in air. At $600^{\circ}C$, step-terrace structure started to be formed on the substrate. However, the surface roughness on the terrace was still considerable and a number of islands were observed on the step edges as well as the terraces. As the annealing temperature increased, the islands were absorbed into the step edges. Thus the terraces were smoother and the step edges were more straightened. Well-defined surface with a step height of 0.2 nm was formed above $900^{\circ}C$. On the other hand, when the substrate was annealed at a fixed temperature of $1000^{\circ}C$, the change of surface morphology was observed for the substrate annealed for 10 min. After the annealing for 30 min, the surface on which any islands could not survive was observed.

Deactivation Kinetics in Heavily Boron Doped Silicon Using Ultra Low Energy Ion Implantation (초 저 에너지 이온주입으로 고 조사량 B 이온 주입된 실리콘의 Deactivation 현상)

  • Yoo, Seung-Han;Ro, Jae-Sang
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.398-403
    • /
    • 2003
  • Shallow $p^{+}$ n junction was formed using a ULE(ultra low energy) implanter. Deactivation phenomena were investigated for the shallow source/drain junction based on measurements of post-annealing time and temperature following the rapid thermal annealing(RTA) treatments. We found that deactivation kinetics has two regimes such that the amount of deactivation increases exponentially with annealing temperature up to $850^{\circ}C$ and that it decreases linearly with the annealing temperature beyond that temperature. We believe that the first regime is kinetically limited while the second one is thermodynamically limited. We also observed "transient enhanced deactivation", an anomalous increase in sheet resistance during the early stage of annealing at temperatures higher than X$/^{\circ}C$. Activation energy for transient enhanced deactivation was measured to be 1.75-1.87 eV range, while that for normal deactivation was found to be between 3.49-3.69 eV.

Effects of Sulfur Segregation on Tertiary Recrystallization Kinetics in Thin-gauged 3% Si-Fe Electrical Strip

  • Chai, K.H.;Na, J.G.;Heo, N.H.;Kim, J.C.;Lee, S.R.;Woo, J.S.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.5-9
    • /
    • 1999
  • Effect of sulfur segregation on tertiary recrystallization and magnetic induction during final annealing was investigated in a 3% Si-Fe electrical strip containing 6 ppm(LS) and 15 ppm(HS) sulfur. During final annealing, Auger peak height of segregated sulfur on the surface of the strips reached a maximum, and then decreased to low level with increasing annealing time, which is attributed to sulfur segregation and evaporation. The magnetic induction of the thin-gauged 3% Si strip was inversely proportional to the Auger peak height of segregated sulfur on the surface. The overall profile for surface segregation of sulfur and B10 was observed, irrespective of sulfur content in Si-Fe strips, but the peaks of LS strips appeared earlier than those of HS strips. The grain growth rate of the LS strips during final annealing was faster than that of the HS strips, which may be attributed to the pinning effects of segregated sulfur. With increasing final annealing temperature, B10 value increased rapidly and the saturation level in B10 increased.

  • PDF

Effects of Annealing on Structure and Properties of TLCP/PEN/PET Ternary Blend Fibers

  • Kim, Jun-Young;Seo, Eun-Su;Kim, Seong-Hun;Takeshi Kikutani
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2003
  • Thermotropic liquid crystalline polymer (TLCP)/poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephthalate) (PET) ternary blends were prepared by melt blending, and were melt-spun to fibers at various spinning speeds in an effort to improve fiber performance and processability. Structure and property relationship of TLCP/PEN/PET ternary blend fibers and effects of annealing on those were investigated. The mechanical properties of ternary blend fibers could be significantly improved by annealing, which were attributed to the development of more ordered crystallites and the formation of more perfect crystalline structures. TLCP/PEN/PET ternary blend fibers that annealed at 18$0^{\circ}C$ for 2 h, exhibited the highest values of tensile strength and modulus. The double melting behaviors observed in the annealed ternary blend fibers depended on annealing temperature and time, which might be caused by different lamellae thickness distribution as a result of the melting-reorganization process during the DSC scans.

Hydrothermal Growth and Characteristics of ZnO Nanorods on R-plane Sapphire Substrates

  • Kim, Min-Su;Kim, So-A-Ram;Nam, Gi-Ung;Park, Hyeong-Gil;Yun, Hyeon-Sik;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.236-237
    • /
    • 2012
  • ZnO nanorods were grown on R-plane sapphire substrates with the seed layers annealed at different temperature. The effects of annealing temperature for the seed layers on the properties of the ZnO nanorods were investigated by scanning electron microscopy, X-ray diffraction, UV-visible spectroscopy, and photoluminescence. For the as-prepared seed layers, the ZnO nanorods and the ZnO nanosheets were observed. Only the ZnO nanorods were grown as the annealing temperature was above $700^{\circ}C$. The optical transmittance in the UV region was almost zero while that in the visible region was gradually increased as the annealing temperature increased to $700^{\circ}C$. The optical band gap of the ZnO nanorods was increased as the annealing temperature increased to $700^{\circ}C$. In the visible region, the refractive index was decreased with increasing the wavelength, and the extinction coefficient was decreased as the annealing temperature increased to $700^{\circ}C$. The non-linear exciton radiative life time of the FX emission peak was established by cubic equation. The values of Varshni's empirical equation fitting parameters were ${\alpha}=4{\times}10^{-3}eV/K$, ${\beta}=1{\times}10^4K$, and $E_g(0)=3.335eV$ and the activation energy was found to be about 94.6 meV.

  • PDF

Stochastic Radar Beam Scheduling Using Simulated Annealing (Simulated Annealing을 이용한 추계적 레이더 빔 스케줄링 알고리즘)

  • Roh, Ji-Eun;Ahn, Chang-Soo;Kim, Seon-Joo;Jang, Dae-Sung;Choi, Han-Lim
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.196-206
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability, compared with mechanically scanned array radar. AESA radar brings a new challenges, radar resource management(RRM), which is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed stochastic radar beam scheduling algorithm using simulated annealing(SA), and evaluated the performance on the multi-function radar scenario. As a result, we showed that our proposed algorithm is superior to previous dispatching rule based scheduling algorithm from the viewpoint of beam processing latency and the number of scheduled beams, with real time capability.

Physical Properties of Fe Particles Fine-dispersed in AlN Thin Films (Fe 입자를 미세 분산 시킨 AlN 박막의 물리적 성질)

  • Han, Chang-Suk;Kim, Jang-Woo
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • This paper describes the fabrication of AlN thin films containing iron and iron nitride particles, and the magnetic and electrical properties of such films. Fe-N-Al alloy films were deposited in Ar and $N_2$ mixtures at ambient temperature using Fe/Al composite targets in a two-facing-target DC sputtering system. X-ray diffraction results showed that the Fe-N-Al films were amorphous, and after annealing for 5 h both AlN and bcc-Fe/bct-$FeN_x$ phases appeared. Structure changes in the $FeN_x$ phases were explained in terms of occupied nitrogen atoms. Electron diffraction and transmission electron microscopy observations revealed that iron and iron nitride particles were randomly dispersed in annealed AlN films. The grain size of magnetic particles ranged from 5 to 20 nm in diameter depending on annealing conditions. The saturation magnetization as a function of the annealing time for the $Fe_{55}N_{20}Al_{25}$ films when annealed at 573, 773 and 873 K. At these temperatures, the amount of iron/iron nitride particles increased with increasing annealing time. An increase in the saturation magnetization is explained qualitatively in terms of the amount of such magnetic particles in the film. The resistivity increased monotonously with decreasing Fe content, being consistent with randomly dispersed iron/iron nitride particles in the AlN film. The coercive force was evaluated to be larger than $6.4{\times}10^3Am^{-1}$ (80 Oe). This large value is ascribed to a residual stress restrained in the ferromagnetic particles, which is considered to be related to the present preparation process.

The Influence of Rapid Thermal Annealing Processed Metal-Semiconductor Contact on Plasmonic Waveguide Under Electrical Pumping

  • Lu, Yang;Zhang, Hui;Mei, Ting
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • The influence of Au/Ni-based contact formed on a lightly-doped (7.3×1017cm−3, Zn-doped) InGaAsP layer for electrical compensation of surface plasmon polariton (SPP) propagation under various rapid thermal annealing (RTA) conditions has been studied. The active control of SPP propagation is realized by electrically pumping the InGaAsP multiple quantum wells (MQWs) beneath the metal planar waveguide. The metal planar film acts as the electric contact layer and SPP waveguide, simultaneously. The RTA process can lower the metal-semiconductor electric contact resistance. Nevertheless, it inevitably increases the contact interface morphological roughness, which is detrimental to SPP propagation. Based on this dilemma, in this work we focus on studying the influence of RTA conditions on electrical control of SPPs. The experimental results indicate that there is obvious degradation of electrical pumping compensation for SPP propagation loss in the devices annealed at 400℃ compared to those with no annealing treatment. With increasing annealing duration time, more significant degradation of the active performance is observed even under sufficient current injection. When the annealing temperature is set at 400℃ and the duration time approaches 60s, the SPP propagation is nearly no longer supported as the waveguide surface morphology is severely changed. It seems that eutectic mixture stemming from the RTA process significantly increases the metal film roughness and interferes with the SPP signal propagation.