• Title/Summary/Keyword: tilt rotor

Search Result 111, Processing Time 0.026 seconds

Ground Effect Analysis of Tilt-Rotor Aircraft (틸트 로터 항공기의 지면 효과 분석)

  • Kim, Cheol-Wan;Chang, Byung-Hee;Lee, Jang-Yeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.427-430
    • /
    • 2006
  • The ground effect on tilt-rotor UAV is analyzed by simulating the hovering UAV for various altitudes. Ground effect increases pressure beneath the UAV body and generates additional lifting force. The ground effect diminishes at altitude 3m and hovering UAV generates constant lifting force above 3m.

  • PDF

Study of Longitudinal Stability of eVTOL UAM with Tilt Rotor and Tandem Wing (Tilt Rotor와 Tandem Wing을 적용한 eVTOL UAM의 세로안정성 연구)

  • Joo Chan-Young;Kim Ha-Min;Kim Min-Jae;Min Kyoung-Soon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.941-946
    • /
    • 2023
  • To improve the lift, cruise speed, and range of eVTOL aircraft, which are being considered as future transportation vehicles, this paper introduces the concepts of Tilt Rotor and Tandem Wing to the aircraft. We developed an aircraft and conducted flight experiments to obtain flight videos and flight logs. The results of the analysis of the flight videos and flight logs showed that the aircraft's moment was excessively forward and the attitude was not recovered. To address this problem, we modified the wing incidence angles and surface areas in XFLR5 to obtain the optimal pitching moment coefficients to ensure vertical stability. We then analyzed the redesigned aircraft, developed using CATIA, through XFLR5. The results of this study provide valuable insights, suggesting that the incorporation of Tilt Rotor and Tandem Wing designs can contribute to achieving stable pitching moment coefficients. This innovative approach offers a promising avenue to significantly enhance vertical stability in UAM vehicles, paving the way for future advancements in the field.

Ironbird Ground Test for Tilt Rotor Unmanned Aerial Vehicle

  • Hwang, Soo-Jung;Choi, Seong-Wook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • The power plant system of a tilt rotor unmanned aerial vehicle (UAV) was verified by the Ironbird ground test, which considerably reduces cost and risk during the developmental stages. The function and performance of the engine, drive line, nacelle conversion, and rotor systems were evaluated using a building block test approach. The Ironbird test concept facilitates the discovery of potential faults in earlier stages of the testing period. As a result, the developmental testing period could effectively be shortened. The measured test data acquired through a ground control and data acquisition system exhibited satisfactory results which meet the developmental specifications of a tilt rotor UAV.

Design of Gimbal Hub for Smart UAV Tilt Rotor (스마트무인기 틸트로터용 짐발허브 설계)

  • Lee, Joo-Young;Kim, Jai-Moo;Lee, Myeong-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.625-634
    • /
    • 2007
  • KARI SUAV program was initiated to develop a Smart Unmanned Aerial Vehicle with innovative smart technologies. SUAV is a tilt rotor aircraft of which rotor system is 3-bladed, gimbaled hub type. Several existing concepts of gimbaled hub were analyzed and compared to investigate the applicability to SUAV rotor system design. From the result of these investigations, it was concluded that a new design concept of low cost and high reliability characteristics was necessary for the rotor hub development of SUAV. The design requirements of new gimbal hub concept and the design results were presented. Also, the analysis results to verify the satisfaction of design requirements of SUAV rotor system were presented.

Flight Dynamics Mathematical Modeling of Quad Tilt Rotor UAM for Real-Time Simulation (쿼드 틸트 로터 UAM 실시간 비행 시뮬레이션을 위한 비행역학 수학적 모델링)

  • Hyunseo Kang;Nahyeon Roh;Do-young Kim;Min-jun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.18-26
    • /
    • 2024
  • This paper describes the results of a study on Generic Quad Tilt Rotor UAM aircraft, focusing on nonlinear mathematical modeling and the development of real-time simulation software. In this research, we designed a configuration for a Generic Quad Tilt Rotor eVTOL UAM aircraft based on NASA's UAM mission requirements. We modeled the aerodynamics using a database, the prop-rotor dynamics with a thrust database, and included a ground reaction and atmospheric model in the flight model. We defined the control concept for various modes(helicopter mode, transition mode, and airplane mode), derived tilt angle corridors, and formulated flight control requirements. The resultant real-time flight simulation software not only performs trim analysis for Tilt Rotor UAM aircraft but also predicts handling qualities, optimizes tilt angle scheduling based on dynamic characteristics, designs and validates flight control laws for helicopter, transition, and airplane modes, and facilitates flight training through simulator integration.

Tethered Hover Test for Small Scaled Tilt-rotor UAV (축소형 틸트로터 무인기의 안전줄 호버 시험)

  • Park, Bum-Jin;Yoo, Chang-Sun;Chang, Sung-Ho;Choi, Seong-Wook;Koo, Sam-Ok;Kang, Young-Shin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2007
  • Tilt rotor aircraft can take off and land vertically and cruise faster than any other helicopter. A scaled flight demonstration model of a tilt rotor aircraft has been developed by KARI. Because the flight characteristics of tilt rotor are not well known, the developed scaled model would be helpful to evaluate flight control algorithm of a full scale aircraft. The tethered hover test has been performed in order to improve hover flight characteristics of tilt rotor aircraft prior to flight test of the small scaled model. During the tethered hover test, the performance of rotor speed governor, rate SAS (Stability Augmentation System) and control surface mixers have been evaluated. We expect that the results of real flight hover test would be quite same as tethered hover test. Therefore the tethered hover test results will reduce the risk of flight test properly by fixing some of hidden problems which might occur during the flight test. This paper presents the results of tethered hover test in detail and shows how it could be final ground test before flight test. The control mixer gain and rate SAS feedback gains were modified in order to get higher controllability and stability during the tethered hover flight. The rotor governor showed that it could keep rotor RPM constant with very small deviation even during severe pilot collective input change. The tethered hover test results gave pilot and engineers confirmation and experience about the scheduled flight test.

  • PDF

Synthesis of Nonlinear Model Matching Flight Control System for Tilt Rotor Aircraft

  • Asada, Yasuhiro;Osa, Yasuhiro;Uchikado, Shigeru;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.979-984
    • /
    • 2005
  • In this study, we suggest a tilt rotor aircraft and attempt to apply a nonlinear model matching control method for its maneuver. The proposed method is very simple and useful to construct the control law for the complicated nonlinear system such as aircraft motion.

  • PDF

The Development of Fatigue Load Spectrum and Fatigue Analysis for the Tilt Rotor UAV (틸트 로터 무인항공기의 피로하중 스펙트럼 생성 및 피로해석)

  • Im, Jong-Bin;Park, Young-Chul;Park, Jung-Sun;Lee, Jeong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.654-659
    • /
    • 2007
  • In this paper, the fatigue load spectrum for tilt rotor UAV is developed and fatigue analysis is achieved for flaperon joint. Tilt rotor UAV has two modes which are helicopter mode when UAV is taking off and landing and fixed wing mode when UAV is cruising. To make fatigue load spectrum, FELIX for helicopter mode and TWIST for fixed wing mode are used. And Fatigue analysis of flaperon joint is achieved using fatigue load spectrum we obtained. When S-N test data are analyzed, we use the Kriging meta model to get probability S-N curve for whole range of material life. The result which is life of flaperon joint obtained by suggested fatigue analysis procedure in this paper is compared with that obtained by MSC/Fatigue.

  • PDF

Collision Avoidance Maneuver Simulation of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기의 충돌회피기동 모사)

  • Hwang, Soo-Jung;Lee, Myeong-Kyu;Oh, Soo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.33-45
    • /
    • 2007
  • The collision avoidance maneuver flight simulation for tilt rotor unmanned aerial vehicle was performed by time-accurate numerical integration method based on wind tunnel test data. Five representative collision avoidance maneuvers were simulated under constraints of aerodynamic stall, propulsion power, structural load, and control actuator capability. The collision avoidance performances of the maneuvers were compared by the computed collision avoidance times. The sensitivities of initial flight speed and collision zone shape on the collision avoidance time were investigated. From these results, it was found that the moderate pull-up turn maneuver defined using moderate pitch and maximum roll controls within simulation constraints is the most robust and efficient collision avoidance maneuver under the various flight speeds and collision object shapes in the tilt rotor UAV applications.

  • PDF

Numerical Analysis of Aerodynamic Performance for Rotating Blades of Tilt Rotor Aircraft in Cruise Mode (순항중인 틸트로터의 회전하는 블레이드에 대한 공력성능 수치해석)

  • Ahn S. W.;Ko S. H.;Kim B. S.;Choi S. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.21-24
    • /
    • 2005
  • Numerical analysis were made for the unsteady flow fields of the rotor system of a Tilt-Rotor aircraft in cruise mode. The Reynolds-averaged thin-layer Wavier-Stokes equations were discretized by Roe's upwind differencing scheme and integrated in time by the LU-SGS algorithm. The computational domain of the rotor system was constructed by seven multi-block Chimera grids. Comparison of pressure coefficient on the surface of the main wing and blades were made for 3cases of advance ratio(0.325, 0.350, 0.375) and thrust and power coefficients for the rotor were compared with experimental data.

  • PDF