• Title/Summary/Keyword: tilt rotor

Search Result 111, Processing Time 0.024 seconds

FLOW CONTROL OF SMART UAV AIRFOIL USING SYNTHETIC JET (Synthetic jet을 이용한 스마트 무인기 익형 주위의 유동 제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-50
    • /
    • 2009
  • In order to reduce the download around Smart UAV(SUAV) at hovering and transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including wing leading and trailing edge separation, and the large region of separated flow beneath the wing. First, in order to control the trailing edge separation, synthetic jet is located at 30, 95% of flap chord length. The flow control using synthetic jet on flap shows that stall characteristics depending on several mode can be improved through separation vortices resizing. Also, a flap jet and a 0.01c jet which control the separation efficiently are applied at the same time at each test case because controlling the leading edge separation is essential for download reduction. As a result, time averaged download is reduced about 18% comparing with no control case at hovering mode and 48% at transition mode. These research results show that if flow control using leading edge jet and trailing edge jet is used effectively to the SUAV in overall flight mode, flight performance and stability can be improved.

  • PDF

Redundancy Management for a Duplex FBW Flight Control System (2중으로 다중화된 FBW/ FCS의 다중화 관리)

  • Nam, Yoon-Su;Hong, Sung-Kyung;Yoo, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.46-52
    • /
    • 2004
  • A design methodology of the redundancy management for a duplex FBW flight control system is introduced. A statistical analysis is applied to determine two design parameters in CCM(Cross Channel Monitor), threshold and persistence count. An analytic redundancy, which is implemented using a Kalman filtering algorithm is considered. The application of an analytic redundancy to the FCS design of the smart UAV has several advantages of increasing the aircraft's survivability and breaking the tie-condition for a duplex FCS. All the redundancy management algorithms are verified through the numeric simulation for the flight dynamics of the XV-15 tilt rotor.

Fault Detection System Design and HILS Evaluation for the Smart UAV FCS

  • Nam, Yoon-Su;Jang, Hu-Yeong;Hong, Sung-Kyung;Park, Sung-Su
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • This paper is about a redundancy management system design for the Smart UAV(unmanned aerial vehicle) which utilizes the tilt..rotor mechanism. In order to meet the safety requirement on the PLOC(probability of loss of control) of $1.7{\times}10^{-5}$ per flight hour for FCS (flight control system) failures, a digital FCS is mechanized with a dual redundant structure. A fault detection system which is composed of a CCM(cross channel monitor) and analytic redundancy using the Kalman filtering is designed, and its effectiveness is evaluated through experiments. A threshold level and persistence count for managing redundant sensors are designed based on the statistical analysis of the FCS sensors. To increase the survivability of the UAV after the loss of critical sensors in the SAS(stability augmentation system) and to provide reference information for a tie-breaking condition at which an ILM(in-line monitor) cannot distinguish the faulty channel between two operating ones, the Kalman filter approach is investigated.

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.26-33
    • /
    • 2005
  • Smart UAV, which adopting tiltrotor aircraft concept, requires vertical take-off and landing, long endurance and high speed capability. These contradictable flight performances are hard to meet unless the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the three performance requirements, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flap systems. Considering aerodynamic performance and structural simplicity, a final flap configuration is selected and the performance is validated through the wind tunnel testing for 40% scale model.

A Study on Fault Detection of a Turboshaft Engine Using Neural Network Method

  • Kong, Chang-Duk;Ki, Ja-Young;Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.100-110
    • /
    • 2008
  • It is not easy to monitor and identify all engine faults and conditions using conventional fault detection approaches like the GPA (Gas Path Analysis) method due to the nature and complexity of the faults. This study therefore focuses on a model based diagnostic method using Neural Network algorithms proposed for fault detection on a turbo shaft engine (PW 206C) selected as the power plant for a tilt rotor type unmanned aerial vehicle (Smart UAV). The model based diagnosis should be performed by a precise performance model. However component maps for the performance model were not provided by the engine manufacturer. Therefore they were generated by a new component map generation method, namely hybrid method using system identification and genetic algorithms that identifies inversely component characteristics from limited performance deck data provided by the engine manufacturer. Performance simulations at different operating conditions were performed on the PW206C turbo shaft engine using SIMULINK. In order to train the proposed BPNN (Back Propagation Neural Network), performance data sets obtained from performance analysis results using various implanted component degradations were used. The trained NN system could reasonably detect the faulted components including the fault pattern and quantity of the study engine at various operating conditions.

The Development of Performance Analysis Code for Pre-Conceptual Design of VTOL UAV (수직이착륙/고속순항 무인기 초기개념설계를 위한 성능예측 프로그램 개발)

  • Jung, Won-Hyung;Lee, Kyung-Tae;Kim, Jung-Yub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.1-9
    • /
    • 2004
  • The performance analysis code has been developed for vertical take-off and landing(VTOL) UAV which can be utilized as a trade analysis tool in the pre-conceptual design phase. The UAV requires VTOL capability and high speed cruise performance. The main logic of this performance analysis code is to estimate performance parameters of each mission segment by mission fuel weight iteration. The reliability of this performance analysis code is discussed by comparing the data of existing dual flight mode VTOL UAVs such as Boeing CRW and Bell Tilt Rotor.

Development of European Rotorcraft in 21st Century (21세기 유럽의 회전익 개발 동향 분석)

  • Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.679-686
    • /
    • 2018
  • In previous paper[1], the authors had compared the current status of European and US rotorcraft development status. In this paper, more detailed procedures have been studied how the European rotorcraft technologies are developed preparing for 21 st century to be more competitive to US. For the systematic procedure to develop next generation aviation technologies including rotorcraft, the pan-European organization, ACARE, was established, and proposed major research agenda for next generation aviation technologies and businesses. Based on the proposed research agenda, all the R&D programs supported by EU are reorganized to be more efficient and competitive. The procedures for the rotorcraft technologies are, first, cabin noise/vibration reduction program (FRIENDCOPTER), second, core technologies to increase of rotor efficiencies and reduce rotor noise (GRC), and then finally to develop fast/long-range next generation rotorcraft (Fast Rotorcraft). As mentioned in previously, all the R&D procedure has to satisfy basic research agenda especially the environmental impact. With theses procedure, the European rotorcraft business had successful achievements not only in current and future market share, but also preparing for next generation rotorcraft platform such as compound and tilt-rotor rotorcraft satisfying market needs.

Development of Preliminary Conceptual Design/ Comprehensive Analysis Programs for Next Generation Rotorcraft (차세대 회전익 기본개념설계/통합해석 프로그램의 개발)

  • Oh, Sejong;Park, Donghoon;Ji, Hyung Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • The authors had presented two previous papers[1,2] on Helicopter/Rotorcraft develoment in Europe and US. Meanwhile, the next generation rotorcrafts, currently under development in US and Europe, have new configurations (tilt-rotor, coaxial, compound) of rotor-type vertical takeoff/landing rotorcrafts to overcome the disadvantages of traditional helicopters. For developing these new types of rotorcrafts, the upgraded conceptual design/comprehensive programs are required. In US and Europe, they are already developing new program tools with their technologies and database obtained during more than last half centuries. For us, many academia, research institutes and industrial engineers have experienced and developed core technologies on rotorcrafts (aerodynamics, structural analysis, flight dynamics, and noise analysis etc.) comparable to US and Europe during last couple of decades of developing helicopters and various configurations of rotorcrafts. In this paper, the pros and cons of conceptual design/comprehensive tools currently used in US and Europe have been summarized. Furthermore, the possibilities and problems to develope our own design and analysis tools have been studied.