• Title/Summary/Keyword: tillering sequence

Search Result 4, Processing Time 0.021 seconds

Biomass and Molecular Characteristics of Multi-tillering Miscanthus Mutants

  • Lee, Geung-Joo;Zhang, Lili;Choi, Young In;Chung, Sung Jin;Yoo, Yong Kweon;Kim, Dong Sub;Kim, Sang Hoon
    • Korean Journal of Plant Resources
    • /
    • v.25 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • Compared to wide ranges of genetic variation of natural populations, very limited Miscanthus cultivar has been released. This study was the first report on the development of Miscanthus cultivar by means of radiation breeding. Seeds of M. sinensis were initially exposed to gamma rays of 250 Gy for 24 h, generated from a $^{60}Co$ gamma-irradiator. The irradiated seeds were sown and then the highly tiller-producing mutants were selected for this study. Biomass-related parameters including tiller number, plant height, stem diameter, and leaf number were measured. Ploidy level and internal transcribed spacer (ITS) were investigated to characterize the mutants compared to wild type (WT) Miscanthus. Plant height and tiller number were negatively related, where multi-tillering mutants were relatively short after 4 month growth. However stem diameter and leaf number were greater in mutants. All the materials used in this study were diploid, implying that the mutants with greater tiller numbers and stem diameter were not likely related to polyploidization. Based on the sequence of ITS regions, the mutants demonstrated base changes from the gamma irradiation where G+C content (%) was decreased in the ITS1, but increased in ITS2 when compared to WT sequence. ITS2 region was more variable than in ITS1 in the mutants, which collectively allows identification of the mutants from WT. Those mutants having enhanced tillers and allelic variations might be used as breeding materials for enhanced biomass-producing Miscanthus cultivars.

Mapping of the Reduced Culm Number Trait in Rice (Oryza sativa L.) rcn10(t) Mutant

  • Yeo, Un-Sang;Lee, Jong-Hee;Kim, Choon-Song;Jeon, Meong-Gi;Oh, Tae-Yong;Han, Chang-Deok;Shin, Mun-Sik;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.223-227
    • /
    • 2008
  • In rice, tillering is an important trait determining yield. To study tillering at the agricultural and molecular aspects, we have examined a spontaneous rice mutant that showed reduction in the number of culms. The mutant was derived from a $F^6$ line of the cross of Junambyeo*4 / IR72. It could produce, on average, 4 tillers per hill in the paddy field while wild-type plants usually have 15. Except the reduced culm numbers, they also show pale green phenotypes. The phenotypes of this mutant were co-segregated as the monogenic Mendelian ratio (${\chi}^b=0.002$, p=0.969). In order to locate a gene responsible for the rcn phenotype, the mutant with the japonica genetic background was crossed with Milyang21 of the indica background. Bulked segregant analysis was used for rapid determination of chromosomal location. Three SSR markers (RM551, RM8213, and RM16467) on chromosome 4 were genetically associated with the mutant phenotype. Each of the 217 $F_2$ plants was genotyped with simple sequence length polymorphisms. The data showed that RM16572 on chromosome 4 was the closest marker that showed perfect co-segregation among the $F_2$ population. We suggest the new rcn gene studied here name as $rcn10^t$ because there was no report which exhibit a rcn phenotype with a pleiotropic effect of pale green (chlorophyll deficiency), and mapped at same position on chromosome 4.

Growth and Yield Characteristics by Tillering Sequence in Coix lachryma-jobi L. var. mayuen Stapf (율무의 분얼순서에 따른 생육 및 수량 기여도)

  • Yi, Eun-Sub;Yoon, Seong-Tak;Park, Kyeong-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.3
    • /
    • pp.219-225
    • /
    • 2004
  • This study was conducted to evaluate growth and yield characteristics and the contribution to the yield according to the emergent sequence of tiller under two planting density $(60{\times}15\;cm,\;60{\times}25\;cm)$ in Coix lachryma-jobi L. var. mayuen Stapf. The average culm length and number of rachillas of $60{\times}25\;cm$ planting density were 20 cm shorter and 4.7 higher, respectively, whereas seed setting position of $60{\times}25\;cm$ planting density was 1.7 nodes lower compared with $60{\times}15\;cm$ planting density. Culm length and culm diameter of each tiller became shorter and thinner as the tiller emerged later. Length of rachillas was longer, number of grains was higher and ripening rate was also higher in $60{\times}25\;cm$ planting density than those of $60{\times}15\;cm$ planting density, whereas 100 grain weight in $60{\times}25\;cm$ planting density was lower by 0.5 g compared with $60{\times}15\;cm$ planting density. Length of rachillas and number of grains according to the emergent sequence of tiller were shown shorter and lower as the tiller emerged later. The highest number of bract was obtained from the main culm in both planting densities. 100 grain weight according to the emergent sequence of tiller became lower as the tiller emerged later in $60{\times}15\;cm$ planting density, but there was no clear tendency in $60{\times}25\;cm$ planting density. Among 8 tillers, 5th tiller and 4th tiller of main culm contributed 84.4% to the yield in $60{\times}15\;cm$ planting density, while it was 84.1% in $60{\times}25\;cm$ planting density. Analysis of path coefficient to grain yield showed that direct effect was the highest in the number of grain per tiller followed by in the 100 grain weight and in ripening rate.

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF