• Title/Summary/Keyword: tight-fitting bodysuit

Search Result 2, Processing Time 0.014 seconds

2D Pattern Development of Tight-fitting Bodysuit from 3D Body Scan Data for Comfortable Pressure Sensation (인체의 3차원 스캔 데이터를 이용한 밀착 바디 슈트 개발)

  • Jeong, Yeon-Hee
    • Korean Journal of Human Ecology
    • /
    • v.15 no.3
    • /
    • pp.481-490
    • /
    • 2006
  • Adjusting pressure level in the construction of athletes' tight-fitting garments by reducing the elastic knit pattern is a challenging subject, which influences the performance of the wearer directly. Therefore, in this study, relationship between the reduction rates of the basic pattern obtained from 3D human scan data and resultant clothing pressure was explored to improve the fit and pressure exerted by clothing. 3D scan data were obtained using Cyberware and they were transformed into a flat pattern using software based on Runge-Kutta method. Reduction rate was examined by subjective wear test as well as objective pressure measurement. As a result, difference in the length between the original 3D body scan data and the 2D tight-fitting pattern was 0.02$\sim$0.50cm (0.05$\sim$1.06%), which was within the range of tolerable limits in making clothes. Among the five garments, the 3T-pattern was superior in terms of subjective sensation and fit. The pressure of the 3T pattern was 2$\sim$4 gf/cm2 at five locations on the body, which is almost the same or a bit higher than that of Z-pattern. In the case of tight-fitting overall garment, the reduction rate of the pattern in the wale direction is more critical to the subjective sensation than the course direction. It is recommended that the reduction grading rules of course direction should be larger than that of Ziegert for a better fit of tight-fitting garments. In the case of wale direction, however, reduction grading rule should be kept the same as suggested earlier by Ziegert (1988).

  • PDF

Fundamental Relationship between Reduction Rates of Stretch Fabrics and Clothing Pressure (신축성 원단의 축소율과 의복압에 대한 기초 연구)

  • Jeong, Yeon-Hee
    • Korean Journal of Human Ecology
    • /
    • v.17 no.5
    • /
    • pp.963-973
    • /
    • 2008
  • Clothing pressure is closely connected with the degree of comfort of an athlete's tight-fitting garments. Therefore, the construction of sports garments is very important to the wearer's athletic performance. In this study, the fundamental relationship between the reduction rates of stretch fabrics and clothing pressure was explored with the aim of improving clothing comfort and obtaining a systematic pattern reduction for women's tight-fitting bodysuits. A women's bodysuit pattern was obtained by the draping method using a dressform. The basic pattern was divided into four parts and changed into reduced pattems according to the amount of fabric stretch determined by ASTM D2594. Clothing pressure was measured using an air-pack-type pressure sensor (model AMI 3037-2) at 20 locations (shoulder, 9 locations; bust, 5; and armhole, 6). Among the 15 garments tested, the mean pressure of the A1 bodysuit was 4.60 $gf/cm^2$, and that of the C5 bodysuit was 22.98 $gf/cm^2$. The mean pressures of the bodysuits with reduction rates of 10% and 20% were below 10 $gf/cm^2$, while those of suits with reduction rates of 30%,40%, and 50% (except C5) were below 20 $gf/cm^2$. The pressure at the shoulder was 9.50$\sim$32.24 $gf/cm^2$, which was higher than that at the bust (3.34$\sim$24.56 $gf/cm^2$) and the armhole (0.95$\sim$12.15 $gf/cm^2$). The mean pressures of the 15 bodysuits were divided into five groups using analysis of variance (ANOVA), and were found to be significantly different (p<0.001). Regression analysis afforded the following expression: mean pressure ($gf/cm^2$) = 1.607 + 0.369[reduction rate (%)].