• Title/Summary/Keyword: tidal deposits

Search Result 63, Processing Time 0.018 seconds

Classification of Tidal Flat Deposits in the Cheonsu-bay using Landsat TM Data and Surface Sediment Analysis (Landsat TM 자료와 표충퇴적물 분석을 통한 천수만 간석지 퇴적물 분류)

  • Jang, Dong-Ho;Chi, Kwang-Hoon;Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.247-258
    • /
    • 2002
  • This study aimed at verifying the grain-sized distribution of surface deposits in a tidal flat using multi-spectral Landsat TM. In this study, we employed the grain-sized analysis, PCA and unsupervised classification techniques for analyzing the distribution of deposits. As a result in this study, the unsupervised classification method using PCA image was found to be most useful in classifying tidal flat deposits using satellite data. This method is considerably effective in analyzing not only the aspects of distribution in terms of accumulated deposits and erosion, but also the changes in seaside topography and shoreline. The grain-sized distribution analysis indicates that the mud flat inside the Cheonsu-bay tidal flat is distributed, the mixed flat located in the middle, and the sand flat distributed near the sea. The sand flat is dominant around the southern part of Seomot isle and its beach. On the other hand, the mud and mixed flat is dominant on the western part. Likewise, the western coast of Seomot isle and its beach is significantly affected by waves facing the offshore. However, the eastern side of the bay could be a site for the evolution of tidal flat made of fine materials where it is less affected by ocean waves. These results show that multi-spectral satellite data are effective for the classification of distribution materials and environmental impact assessment and continuous monitoring. In particular, the research on environmental deposits can provide important decision-supporting information for decision-making on seaside development, by analyzing the progress of deposits and environmental changes.

Seasonal Variation and Preservation Potential of Tidal-Flat Sediments on the Tidal Flat of Gomso Bay, West Coast of Korea

  • Chang, Jin-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.19-22
    • /
    • 2004
  • Seasonal changes of topograpy, sediment grain size and accumulation rate on the Gomso-Bay tidal flat(Fig. 1), west coast of Korea, have studied in order to understand the seasonal accumulation pattern and preservation potential of tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheiers accelerates during the winter and typhoon period, but it almost stops in summer when mud deposition is instead predominant on the middle to upper tidal flat. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods(Fig. 2). Measurements of accululation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface(Table 1) : the upper flat, where the accumulation rate of summer was generally higher than that of winter, was characterized by a continuous deposition throughout the entire year, whereas on the middle flat, sediment accumulations were concentrated in winter realtive to summer, and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Cancores taken across the tidal flat reveal that sand-mud interlaers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore(Fig. 3). Based on above results, it is suggested that the storm deposits formed by winter stors and typhoons would consist of the major part of the Gomso-Bay deposits(Fig. 4).

  • PDF

Late Quaternary Stratigraphy and Unconformity of the Banweol Tidal-Flat Deposits(upper tidal flat) and Unconformity, Kyunggi Bay, West Coast of Korea (한국 서해 경기만 반월 조간대(상부조간대) 퇴적층의 제4기 후기 층서와 부정합)

  • 박용안;임동일;김수정
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2000
  • The late Quaternary stratigraphy and basal unconformity (nonconformity) of the intertidal deposits (upper tidal flat) in the Banweol tidal basin in the Kyunggi Bay, west coast of Korea has been investigated and established. The Unit I (middle to late Holocene upper intertidal deposit) and Unit II (pre-Holocene fluvial to alluvial deposit) in descending order are classified and interpreted. The basement rocks of the Banweol tidal basin is dominantly preCambrian metamorphic rocks on which Unit II is overlying unconformably. In short, the late Quaternary stratigraphy and unconformity of the Banweol tidal flat deposits are established and interpreted in terms of sedimentology and sea-level fluctuation history during late Quaternary.

  • PDF

Difference of Clay Mineral Compositions between Holocene and Late Pleistocene Tidal Deposits in the Haenam Bay, Korea: Evidence of Subaerial Exposure and Weathering

  • Park, Yong-Ahn;Choi, Jin-Yong;Lim, Dhong-Il
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.138-144
    • /
    • 1997
  • The tidal deposits in the Haenam Bay, southwest coast of Korea, are stratigraphically divided at least into two units (Unit I of Holocene and Unit II of late Pleistocene) based on the obtained vibracoring sediments. In Unit I, clay minerals of illite, chlorite, kaolinite and smectite are observed as similar to those of the other modern tidal deposits. Of note, however, is the absence of smectite and chlorite in the upper part of Unit II compared with the clay mineral compositions of Unit I. It is concluded that the subaerial weathering and diagenetic effects rather than depositional processes are responsible for the positive and characteristic differences in clay mineral compositions between two units, that is, the upper part of Unit II was exposed subaerially and weathered diagenetically prior to the late Holocene transgression. Therefore, the bounding relationship between Unit I and Unit II is unconformable.

  • PDF

Property Analyses of Deposits and Landform in Tidal Flat using Satellite Image

  • Jo, Myung-Hee;Sugimori, Yasuhiro;Jo, Wha-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.110-115
    • /
    • 1998
  • Through the ISODATA method, the micro-landform of Julpo-Bay tidal flat was classified into mudflat, mixedflat, and sandflat using Landsat TM image. Each showed an apparent differences in its topographical characteristics and grain size composition. For example, mudflats are formed with flat faces and tidal channel of dissected gully. Its characteristics of grain size analysis that the grains have less than mean grain size 4 phi. Its sorting is bad (higher than 1 S.D.), and it showed strongly positive skewness. But sandflat is topographically flat without tidal channel. It has developed with ripple marks. According to the grain size analysis of deposits, the soil is coarse size with 90% of sand and its sorting is well(lower than 1 S.D.) Also, it showed strongly negative skewness. Mixed flat is in between mudflat and sandflat in its characteristics.

  • PDF

Unconformity and Stratigraphy of late Quaternary Tidal Deposits, Namyang Bay, West Coast of Korea (한국 서해 남양만 조수 퇴적분지의 제 4기 퇴적층서와 부정합)

  • 박용안;최진용
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.332-340
    • /
    • 1995
  • To study stratigraphy of tidal basin deposits, related unconformity and source of late Holocene tidal sediments in Namyang Bay, west coast of Korea, total 8 vibracore sediments have been analyzed. The uppermost stratigraphic sequence of the late Holocene Namyang intertidal deposit overlies three different stratigraphic sequences (1) oxidized reddish brown muddy deposit (Yongduri Member), (2) oxidized yellow deposit (Kanweoldo Formation) and (3) the pre-Cambrian gneiss complex unconformably. Accordingly, three unconformities between those different sequences are recognized. The Namyang tidal deposits (late Holocene) with several meter thickness are mostly coarsening upward sequence suggesting transgressive phase during a continuous rise of sea level. The tidal deposit vibracored down to 4.5 m in depth contains clastic glauconite sands (2% in average) from 2.5 m to the vibracore bottom. These glauconite sands are considered to be transported to the site of Namyang Bay tidal sedimentation from offshore continental shelf of the Yellow Sea along the course of late Holocene sea-level rise.

  • PDF

Late Quaternary Stratigraphy and Depositional Environment of Tidal Sand Ridge Deposits in Gyeonggi Bay, West Coast of Korea (서해 경기만 조석사주 퇴적층의 제4기 후기 층서 및 퇴적환경)

  • Choi, Jae-Yong;Kwon, Yi-Kyun;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Analysis on high-resolution seismic and core data reveals that the sedimentary strata in Gyeonggi Bay consists of four sedimentary units (Unit I-IV, from top to bottom) formed during the late Quaternary period. Unit I is interpreted as sediments of tidal flat and channel-fill deposits, formed during the Holocene transgression. Unit II is divided into shallow-marine facies unit in offshore area and channelized fluvial to estuarine facies unit in nearshore sand ridge and tidal flat. Unit III is considered as tidal flat deposits with the uppermost severely weathered and oxydized layers. This unit is composed of shallow marine sedimentary successions formed during the MIS-5 highstand. The lowermost Unit IV rests on Mesozoic basement rocks, considered as the shallow marine and shelf deposits formed before the MIS-5 lowstand.

Late Quaternary Stratigraphy of the Tidal Deposits In the Hampyung Bay, southwest coast of Korea (한국 서남해 함평만 조간대 퇴적층의 제4기 후기 층서 연구)

  • Park, Yong-Ahn;Lim, Dhong-Il;Choi, Jin-Yong;Lee, Young-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.138-150
    • /
    • 1997
  • The late Quaternary stratigraphy of the tidal deposits in the Hampyung Bay, southwestern coast of Korea comprises 1) Unit III (nonmarine fluvial coarse-grained sediments), 2) Unit II (late Pleistocene tidal deposits), and 3) Unit I (late Holocene fine-grained tidal deposits) in ascending order. The basements of the Hampyung Bay is composed of granitic rocks and basic dyke rocks. These three units are of unconformally bounded sedimentary sequences. The sequence boundary between Unit I and Unit II, in particular, seems to be significant suggesting erosional surface and exposed to the air under the cold climate during the LGM. The uppermost stratigraphic sequence (Unit I) is a common tidal deposit formed under the transgression to highstand sea-level during the middle to late Holocene.

  • PDF

Characteristic Nature of the Unconformity between Holocene and Late Pleistocene in the Tidal Deposits along the Western Coast of Korea

  • Park, Yong-Ahn
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.13-14
    • /
    • 2003
  • It is generally well known that Quaternary is characteristic geologically in terms of glacial and interglacial repeats and their associated unconformity formation. This paper deals with the first finding of the characteristic and significant meaningful unconformity between Holocene and late Pleistocene, which implies submergence and emergence of the tidal sedimentary basin along the western coastal zone of Korea during interglacial stage(IOS-5e) and glacial time(IOS-2). The stratigraphy of intertidal deposits in the Haenam Bay, western coast of Korea shows two depositional sequence units (Unit I of Holocene and Unit II of late Pleistocene) bounded by an erosional surface of disconformity. The disconformity is related to the latest Pleistocene sea-level lowstands (probably during the LGM). The Unit II is interpreted as intertidal deposit showing tidal sedimentary structures and crab burrow ichnology and has two parts (the upper part and the lower part) showing different lithology and character. The upper part of Unit II shows characteristic subaerial exposure features (emergence) and its related lithology. Such subaerially exposed upper part (more or less 4m to 5m in thickness) is characterized by yellow-brownish sediment color, cryoturbat-ed structure, crab burrow ichnofacies and high value of shear strength. Geochemical and clay mineral analyses of the upper part sediments also indicate subaerial exposure and weathering. In particular, very high value of magnetic susceptibility of the upper part in comparison to that of the lower part is interpreted as pedogenetic weathering during the subaerial exposure period.

  • PDF