• Title/Summary/Keyword: tidal currents

Search Result 348, Processing Time 0.022 seconds

Tides and Tidal Currents of the Yellow and East China Seas during the Last 13000 Years

  • Oh, Im-Sang;Lee, Dong-Eun
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 1998
  • In order to investigate the paleotidal structure and current pattern in the Yellow and East China seas (YECS) since the late Wisconsin, which is the last glacial maximum period, a two-dimensional version of the Princeton ocean model is used. We assume that subtracting the sea-level differences from the present one can produce paleobasins and that the paleotide did not differ greatly from the present one in the adjacent deep seas, the northwestern Pacific Ocean and the East Sea. We could successfully simulate the paleo-M$_2$ tides and tidal currents of 9000, 11000 and 13000 yr B.P. The result of the model shows considerable differences in the tidal pattern in each period. As the eustatic sea level rose, the amplitudes of the paleotides and the number of the amphidromic points generally increased, but the tidal currents in each paleobasin were strong and about the same order as the present day's. Based on these paleotide calculations, we suggest that there should have been active erosion in the paleobasin as in the present YECS, and the erosion should have played an important role on widening the paleobasin to the present shape, YECS.

  • PDF

An Implicit Numerical Method for Two-Dimensional Tidal Computation (음해법에 의한 2차원 조류유동 계산법)

  • Sun-Young Kim;Mu-Seok Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • A two-dimensional numerical model for tidal currents based on the depth averaged equation is developed. The mode1 employs a rectangular grid system for its simplicity in the application of complicate coastal shore lines. To raise computing efficiency, implicit approximate factorization scheme is implemented in solving governing equations. An upwind-differencing is used to discretize convective terms, which provides a numerical dissipation automatically and suppresses any oscillations caused by nonlinear instabilities. Some numerical tests are made against the analytic solutions of a linearized shallow water equation to validate the developed numerical scheme, and comparisons of the model prediction with the analytic solution are satisfactory. As a real application, the tidal currents are computed on the Inchon area where the tidal currents are important for the design of new canal which is under construction.

  • PDF

Development of Regression Equation for Water Quantity Estimation in a Tidal River (감조하천에서의 저수위 유량산정 다중회귀식 개발)

  • Lee, Sang Jin;Ryoo, Kyong Sik;Lee, Bae Sung;Yoon, Jong Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 2007
  • Reliable flow measurement for dry season is very important to set up the in-stream flow exactly and total maximum daily load control program in the basin. Especially, in the points which tidal current effects are dominant because reliability of the low measurement decrease. The reliable measuring methods are needed. In this study, we analysis the water surface elevation difference of water surface elevation. Quantity relationship to consider tidal currents in these regions. It is known that tidal current effects from Nakdong river barrage are dominant in Samrangjin measuring station. We developed multiple regression equation with water surface elevation, quantity, and difference of water surface elevation and compared these results water measured rating curve. All of these regression equation including linear regression equation and log regression equation fits better measured data them existing water surface elevation quantity line and Among three equations, the log regression equation is best to represent the measured the rating curve in Samrangjin point. The log regression equation is useful method to obtain the quantity in the regions which tidal currents are dominant.

Flow characteristics of Geumo Islands Sea area by numerical model experiments (수치실험을 통한 금오열도 해역의 해수유동 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.159-174
    • /
    • 2022
  • Flow prediction was carried out through observational survey and three dimensional multi-layered numerical diagnostic model experiment to clarify the time and spatial structure of tidal current and residual flow dominant in the sea exchange and material circulation of the waters around Geumo Islands in the southern waters of Korea. The horizontal variation of tidal current is so large that it causes asymmetric tidal mixing due to horizontal eddies and the topographical effect creating convergence and dispersion of flow direction and velocity. Due to strong tidal currents flowing northwest-southeast, counterclockwise and clockwise eddies are formed on the left and right sides of the south of Sori Island. These topographical eddies are created by horizontal turbulence and bottom friction causing nonlinear effects. Baroclinic density flows are less than 5 cm/s at coastal area in summer and the entire sea area in winter. The wind driven currents assuming summer and winter seasonal winds are also less than 5 cm/s and the current flow rate is high in winter. Density current in summer and wind driven current in winter have a relatively greater effect on the net residual flows (tidal residual current + density current + density driven current) around Geumo Islands Sea area.

Characteristics of Hydrography and Tidal Current in Hampyung Bay, the Western Coast of Korea (서해 함평만의 해수 물성구조 및 조류 특성)

  • Lee, Kyeong-Sig;Jun, Sue-Kyung
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.247-256
    • /
    • 2009
  • Characteristics of hydrography and tidal currents were investigated in Hampyung Bay through in situ CTD data, tidal currents and elevations. According to the seasonal weather variability, hydrography showed the lower density with high temperature and low salinity in summer and the higher density with low temperature and high salinity in winter. In particular, the thermal structure like a tidal front was formed along the central channel at the neap tide of summer. The critical value of the parameter $SH(=log_{10}(H/U^3)$ where H is depth and U is $M_2$ tidal current amplitude) representing the formation position of tidal front was estimated from 2.4 to 3.5. In addition, the potential energy anomaly $({\phi})$ was ranged between 0.985 and 6.998 Joule/$m^3$, which gradually increased from the mouth into the inner bay. This front may be caused by the unique topography with wide tidal flat and the local difference of tidal current strength. The observed tidal currents at the mouth of bay showed that the ebb time was shorter than the flood time with the increase of depth. This asymmetric ebb-tide dominance is interpreted as a result of tidal distortion by the development of a shallow-water-constituent in Hampyung Bay with a wide macro-tidal flat.

Modeling of Tidal and Wind-Driven Currents in Eastern Coastal Waters of the Yellow Sea (황해동측 연안성의 조류 및 풍성류 모형)

  • Ro, Young-Jae;You, Ik-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.231-242
    • /
    • 1992
  • This study uses a numerical model to investigate the circulation patterns of the tidal and wind driven current components. The model is vertically averaged 2-D transient using explicit nume-rical scheme, based on equation of motion and continuity. forced by water elevation at open boundaries and wind stress. The model domain extends from 35$^{\circ}$N to 36$^{\circ}$40'N lat., and 125$^{\circ}$E to 126$^{\circ}$40'E long. with x, y grid spacing of 5 km. The model reproduces the tide and tidal currents by 4 major constituents successfully with more than 90% accuracy when compared to two offshore tidal records and currents at one offshore measurements for 22 days. Responses of coastal waters to six schematic wind events are analyzed in terms of current distribution patterns and local features. Regardless of wind directions. strong coastal currents were produced. Bottom topography plays a critical role in producing a local eddy Held whose center is located offshore Pu An with its major radius of 40 km.

  • PDF

Bedform Distribution and Sand Transport Trend on a Subtidal Sand Ridge in a Macrotidal Bay, West Coast of Korea

  • Park, Soo-Chul;Yoo, Dong-geun
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.181-190
    • /
    • 1997
  • A large subtidal sand ridge (Jungang Satoe) in Asan Bay, on the west coast of Korea, was studied in order to understand the morphology and sediment transport trend in a macrotidal setting, by means of analyzing sediment samples, current data, side-scan sonographs and seismic profiles. The ridge is about 15 km long and 2-5 km wide, with a relief of about 15 m. It is elongated in the flow direction of flood (SE) and ebb (NW) tidal currents, but asymmetrical in cross section. The western and southwestern side of the ridge is characterized by relatively gentle slopes averaging 0.4$^{\circ}$, whereas on the northeastern side, relatively steep slopes were mapped with 1.6$^{\circ}$ slope angles. Tidal currents associated with the ridge are very strong; maximum surface velo-cities range from neap values of 50 cm/s to spring values of 130 cm/s. The shear velocities during flood and ebb are strong enough to erode and transport sands on the ridge. Sand waves and megaripples (dunes) are the most common bedforms produced by the tidal currents, which show regional differences in shape and size on the ridge. The distribution pattern of these bedforms in-dicates that the flood tidal currents are dominant on the offshore (northwest) side of the ridge, whereas the onsho.e (southeast) side of the ridge is ebb-dominated. The sand transport path as inferred from bedform orientations is directed toward the ridge crest on the flanks, whereas on the crest, it is near-longitudinal to the ridge axis. The convergent, upslope movement of sands on the ridge flanks appears to be important in sand ridge building and maintenance. A significant ridge migration toward the northeast can be suspected on the basis of the ridge morphology, which may cause offshore hazards for navigation.

  • PDF

Prediction of Tidal Changes due to the Development of Incheon Coastal Waters (인천해역 개발에 따른 조석변화 추정)

  • 정신택;소재귀;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.266-274
    • /
    • 1994
  • Two-dimensional numerical analysis is performed for the simulation of tidal characteristics related to various development projects in Incheon coastal waters along the west coast of Korea. Field observation of tides and currents was made in order to provide the input boundary and validation data set to the numerical modelling. For the simulation of changes of tides and currents a depth-integrated two-dimensional shallow water model of Flather and Heaps (1975) has been used herein. Tidal model is set up with open boundary sea level from observed two major constituents, M$_2$ and S$_2$. Subsequently the established model is utilized to investigate the effect of two development projects in this region. It has been found that in spring tide the changes of tidal amplitude are small, however, those of tidal current are locally significant.

  • PDF

Comparative Study for dry-wet Treatment Effect in a Tidal Hydrodynamic Simulation (조석수동역학 모의에서 조간대 침수-노출 고려효과 비교연구)

  • 서승원;김정훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • In order to evaluate the effect of dry-wet treatment on well developed tidal flats along the complex coastal line in the western part of Korean Peninsula, we adopted a finite element tidal hydrodynamic simulation model, ADCIRC incorporating newly suggested dry-wet option and applied it to Chonbuk coastal area and Keum river estuary. Model comparison with observed current data by RMS error in the Chonbuk area shows very good agreement within 1cm/sec of tidal velocity difference and 3% of error to maximum tidal currents. However there is not seen any significant advantages in dry-wet treatment. For the tidal volume tests in the Keum river estuary, the differences are satisfied within 5% nevertheless of dry-wet treatment but in a near cross section it marks over 20%. However both results are almost same in tidal residual tests. Thus it can be concluded that dry-wet option is not always necessary in the simulation of long-term dispersion analysis.

Impact of the coastal structures on the water circulation near Gusipo coast, Yellow Sea, Korea (서해 구시포 해안에서 해수유동에 미치는 구조물의 영향)

  • Kim, Cha-Kyum;Park, Il Heum
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.865-875
    • /
    • 2022
  • Field measurements and numerical simulations using EFDC model were performed to quantify the changes of water circulation near Gusipo coast located in the Yellow Sea of Korea to estimate the impact of the construction of the coastal structures (jetty, groin, Gusipo port and bridge). The model predicted tide and tidal currents agreed reasonably well with the measurements. The maximum currents during spring tide near the Gusipo Beach (GB) have the range of 20~40 cm/sec whereas those off the GB range from 60 to 80 cm/sec. The typical patterns of tidal current show parallel with the local isobath. Tidal currents flow northeastward during the flood tide whereas the currents during the ebb tide flow southwestward. The current speeds at shielded waters after the construction of coastal structures strongly decreased as compared with those before the construction. The tidal volume due to the construction of coastal structures was estimated using the depth averaged velocity for 24 hours of spring tide. Tidal volume after construction of coastal structures was compared with initial state (before construction). Tidal volume at present state (after construction of jetty, groin, Gusipo port and bridge) decreased by 28.4% as compared with that of the initial state. The volume after construction of jetty and groin decreased by 21.3%, and the volume after construction of Gusipo port and bridge decreased by 9.8%.