• Title/Summary/Keyword: tidal and seasonal variations

Search Result 66, Processing Time 0.023 seconds

The autecology of Zostera marina and Z. japonica at Sagumi Bay in the southwestern coast of Korea (남해 서부연안의 사구미 만에서 거머리말(Zostera marina)과 애기거머리말(Z. japonica)의 개체생태학)

  • Ok, Jae-Seung;Lee, Sang-Yong
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1563-1572
    • /
    • 2014
  • The autecology of the Zostera marina and Z. japonica was studied in populations growing in the same locality (Sagumi Bay, southwestern coast of Korea). Environmental factors and plant characteristics were examined monthly from August 2008 to September 2011. Along intertidal zone, Z. japonica (0.1-0.5 m above mean lower low water, MLLW) occurred above Z. marina (0.5-2.5 m MLLW). Tidal exposure at low tide during day was the highest in the spring and the lowest in the summer. Underwater Irradiance showed seasonal fluctuation that was the highest in spring and summer caused by tidal pattern. Strong seasonal patterns in water temperature appeared to control the seasonal variations in morphology, biomass and leaf growth. The seasonal pattern of Z. japonica resembled that of the Z. marina in morphological characteristics, above-and below-ground biomass, whereas it differed in shoot density and leaf elongation. Despite some similarities in seasonal growth patterns, the patterns of Z. japonica were lagged by 2 month of Z. marina. Seasonal variation in the above biomass of Z. marina was caused by changes in density and plant size, whereas that of Z. japonica was mainly caused by changes in shoot density. Zostera marina was more sensitive to high temperatures than Z. japonica, and the increasing water temperature during the summer became the factor that inhibits the growth of the Z. marina. Zostera Japonica, there is no clear change according to the amount of the light. It is because its habitat locates above that of Zostera marina so that the amount of the light that is necessary to growth is enough and in this condition, any preventing factor does not seem to work at all. Although underwater light getting into Zostera marina's habitat is very low level and there is no any hindrance to the survival of them, it prevents them from their productivity a bit.

Seasonal variations of CO2 concentration and flux in vegetation and non-vegetation environments on the Muan tidal flat of Hampyong Bay (함평만 무안 지역 갯벌의 식생 및 비식생 환경에서 이산화탄소 농도와 플럭스의 계절 변동)

  • So, Yoon Hwan;Kang, Dong-hwan;Kwon, Byung Hyuk;Kim, Park Sa
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.257-266
    • /
    • 2019
  • In this study, we selected 6 vegetation sites (reed community) and 6 non-vegetation sites (tidal flat) in the Muan tidal flat of Hampyeong Bay, and observed seasonal changes in carbon dioxide concentration, flux and soil temperature at low tide conditions. The study was conducted to identify the characteristics of seasonal changes in vegetation and non-vegetation areas through the data observed in May 30, August 8, 2012 and January 31, 2013. The average carbon dioxide concentration in the vegetation area was the highest in winter, followed by spring and summer, and the non-vegetation area showed the same concentration change as the vegetation area. The carbon dioxide flux in the vegetation area showed a positive (+) value in both spring and summer, but it was negative (-) in the winter. The average value of carbon dioxide flux was the highest in spring, but it was almost similar to summer, and winter was the lowest negative value. Non-vegetation areas showed positive emission in spring, and negative uptake in summer and winter; mean values were the highest in spring, and the difference between summer and winter was small. In summary of seasonal change characteristics of the research area, the emission of carbon dioxide was dominant in both areas in spring. In summer, carbon dioxide emission was dominant in the vegetation area, and the non-vegetation area was observed to uptake by photosynthesis of phytoplankton, but it was very small. In winter, changes in flux in both areas were very slight.

Changes in Sediment Characteristics in the Eastern Tidal Flat of Donggum Island in Ganghwa, west coast of Korea (강화 동검도 동부 갯벌의 퇴적 특성 변화)

  • Woo, Han Jun;Jang, Seok;Kwon, Su Jae
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.375-384
    • /
    • 2012
  • The sedimentary processes of the Ganghwa tidal flat has been changed over 20 years because of the large-scale construction projects. The sedimentary environment of the Donggum tidal flat, located in the eastern part of Ganghwa tidal flat and in the lower reaches of Yeomha channel, was affected by changes the tidal current regime and estuarine circulation. These resulted an occurrence of rapid deposition in the tidal flat. The silt-clay laminated silt facies in the upper parts of two core sediments suggested that deposition had been relatively high in the tidal flat. The sedimentation rates from the cores using $^{210}Pb$ analysis were 3.25cm/year(st. 3) and 3.47cm/year(st. 5). However the short-term sediment accumulation rates from 2010 to 2012 were mostly less than 1cm/year, indicated that the sediments deposited relatively low rates. As a result, the sediment in the Donggum tidal flat rapidly accumulated during 2000s due to constructions of man-made structures. Recently, the increase of elevation in the tidal flat resulted to show relatively low sedimentation rate with seasonal variations.

Seasonal Variations of Sediment Oxygen Demand and Denitrification in Kanghwa Tidal Flat Sediments (강화도 갯벌 퇴적물의 산소요구량과 탈질소화의 계절 변화)

  • An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Seasonal variations of remineralization and inorganic nitrogen removal capacity were measured from Dec. 2001 to Apr. 2004 in a tidal flat located in south-western pan of Gwanghwa island, Korea by measuring the sediment oxygen demand (SOD) and denitrification. SOD was higher in muddy sediment (Dong-Mak; three year average=$683;m^{-2}d^{-1}$) than sandy sediment(Yeocha; three year average=$457;m^{-2}d^{-1}$). The SOD was high in summer and tended to be lower in winter. During the sediment incubation in Apr. 2002, production of oxygen from sediment was observed implying active benthic photosynthesis. Denitrification was also higher in muddy sediment (Dong-Mak: $5.4;m^{-2}d^{-1}$) than sandy sediment (Yeocha; $3.4;m^{-2}d^{-1}$). The denitrification rate corresponds to the carbon remineralization rate of 9.3 and $5.9\;mg-C\;m^{-2}d^{-1}$ in Dong-Mak and Yeocha, respectively. The denitrification rates were lower compared to rates observed in other coastal area $(0{\sim}200\;{\mu}mole\;m^{-2}h^{-1})$. Although Kwanghwa tidal flat sediments are replete in organic matter, remineralization activity seems to be limited by the availability of labile organic matter. The Kwangwha tidal flat may have potential to effectively remove large load of organic matter. Net remineralization rates were 196 and $132\;mg-C\;m^{-2}d^{-1}$ in Dong-Mak and Yeocha, respectively.

Tidal variations of Nutrient Concentration in Hampyeong Bay, West coast of Korea (서해 함평만에서 조위변화에 따른 영양염 변동)

  • Kang, Mi-Ran;Lim, Dhong-Il;Jang, Pung-Guk;Kim, Gi-Beum;Kang, Young-Shil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.202-208
    • /
    • 2009
  • In order to understand the circulation of nutrient between muddy tidal flat and the surrounding coastal area, tidal time-scale variations in nutrient concentrations were seasonally investigated at the entrance of Hampyeong Bay. The results show that the temperature was higher in ebb tide and lower in flood tide during the summer, but it was lower in ebb tide and higher in flood tide during the autumn/winter. The salinity was higher in flood tide and lower in ebb tide during the summer/winter because of the inflow of external sea water resulting from the increase in the tide level. By contrast, the salinity was lower in flood tide and higher in ebb tide during the autumn. Salinity difference was lower than 0.3 psu between flood tide and ebb tide during survey period. Meanwhile, all nutrient concentrations observed in Hampyeong Bay was lower in flood tide and higher in ebb tide during the summer, and by contrast, it was higher in flood tide and lower in ebb tide during the winter. Characteristically, no clear variation of concentrations was found depending on the tide level during the autumn. This tidal variations imply that the muddy tidal flat of Hampyeong Bay supplies nutrients to the seawater in summer and removes nutrient from the seawater in winter. During tidal cycle, seasonal variation of nutrient concentration in seawater is considered as the result of complex interactions between the mud flat and external sea water.

  • PDF

Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea (변산반도 조간대 표층 퇴적물의 퇴적률 및 저서환경 변화)

  • Jung, Rae-Hong;Hwang, Dong-Woon;Kim, Young-Gil;Koh, Byoung-Seol;Song, Jae-Hee;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • To understand temporal variations in geochemical characteristics of intertidal surface sediments around Byeonsan Peninsula (in the middle of the western coast, Korea) after the construction of Saemanguem dyke, the sedimentation rate and various geochemical parameters, including mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulfide (AVS), were measured along four transects (A.D lines) at monthly intervals from February 2008 to March 2009. The average monthly sedimentation rate ranged from -5.3 to 3.8 mm/month (mean $-0.8{\pm}2.7\;mm$/month), which showed an erosion-dominated environment in the lower part of the intertidal zone. In addition, surface sediments were eroded in summer and autumn, but were deposited in spring and winter. The Mz of surface sediments ranged from -0.8 to $3.4{\varnothing}$ (mean $2.8{\pm}0.5{\varnothing}$), indicating that the surface sediments consist of coarser sediments (sand and slightly gravelly sand). The Mz of surface sediments did not show large monthly and/or seasonal variations, although the sedimentation rates of surface sediment showed large seasonal variation. This may be due to lateral shifting and effective dispersion of surface sediments by wind, tide, and longshore current. The concentrations of IL and COD in the surface sediments ranged from 0.2 to 2.9% (mean $1.4{\pm}0.4%$) and from 0.2 to $18.5\;mgO_2$/g-dry (mean $3.9{\pm}3.4\;mgO_2$/g-dry), respectively, which were slightly higher in spring than in the other seasons. This may be related to spring blooms of phytoplankton in seawater and/or benthic microalgae in surface sediments. On the other hand, no AVS concentrations were detected in surface sediments at any of the sampling stations during the study period.

Seasonal Variability of Internal Tides around the Korea Strait: 3-D High-resolution Model Simulation (대한해협주변 내부조석의 계절적 변동성: 3차원 고해상도 모델 연구)

  • Lee, Hyun Jung;Lee, Ho Jin;Park, Jae-Hun;Ha, Ho Kyung
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This study investigates spatial and temporal variations in the generation and propagation of internal tides around the Korea Strait using a three-dimensional high resolution model (Regional Ocean Modeling System; ROMS). The model results were verified through comparison with in-situ current measurements from an array of 12 acoustic Doppler current profilers (ADCPs) deployed in the Korea Strait. Fluxes and distributions of internal tidal energy were calculated using simulation results gathered in February and August. Our analyses reveal that energetic semidiurnal internal tides are generated in a region around the Korea Strait shelf break ($35.5^{\circ}N$, $130^{\circ}{\sim}130.5^{\circ}E$), where the strong cross-slope semidiurnal barotropic tidal currents interact with a sudden topographical change. The semidiurnal internal tidal energy generated in summer displays values about twice as large as values in winter. Propagation of semidiurnal internal tides also reveals seasonal variability. In February, most of the semidiurnal internal tides propagate only into the open basin of the East Sea due to weak stratification in the Korea Strait, which inhibits their southwestward propagation. In August, they propagate southwestward to $35.2^{\circ}N$ along the western channel of the Korea Strait because of strong stratification. In addition, semidiurnal internal tides generated in a region west of Tsushima Island are found to propagate to the coast of Busan. This can be explained by the intensified stratification due to the strong intrusion of bottom cold water in the western channel of the Korea Strait during summer.

Seasonal and local time variations of sporadic E layer over South Korea

  • Jo, Eunbyeol;Kim, Yong Ha;Moon, Suin;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.61-68
    • /
    • 2019
  • We have investigated the variations of sporadic E (Es) layer using the measurements of digisondes at Icheon ($37.14^{\circ}N$, $127.54^{\circ}E$, IC) and Jeju ($33.4^{\circ}N$, $126.30^{\circ}E$, JJ) in 2011-2018. The Es occurrence rate and its critical frequency (foEs) have peak values in summer at both IC and JJ in consistent with their known seasonal variations at mid-latitudes. The virtual height of the Es layer (h'Es) during equinox months is greater than that in other months. It may be related to the similar variation of meteor peak heights. The h'Es shows the semidiurnal variations with two peaks at early in the morning and late in the afternoon during equinoxes and summer. However, the semi-diurnal variation is not obvious in winter. The semi-diurnal variation is generally thought to be caused by the semi-diurnal tidal variation in the neutral wind shear, whose measurements, however, are rare and not available in the region of interest. To investigate the formation mechanism of Es, we have derived the vertical ion drift velocity using the Horizontal Wind Model (HWM) 14, International Geomagnetic Reference Field, and Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar-00 models. Our results show that h'Es preferentially occur at the altitudes where the direction of the vertical ion velocity changes. This result indicates the significant role of ion convergence in the creation of Es.

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.

Spatio-temporal Variations of Marine Environments and Phytoplankton Community in the Gochang Coastal Waters (GCW) of Southern West Sea in Korea (서해 남부, 고창연안해역의 해양환경 및 식물플랑크톤 군집의 시·공간 변동특성)

  • Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.477-493
    • /
    • 2020
  • This study conducted a seasonal survey to analyze the spatio-temporal variations of marine environments and phytoplankton community in Gochang Coastal Waters (GCW) from August 2016 to April 2017. In the results, the water temperature ranged from 2.1℃ to 34.5℃, showing a large seasonal variation, but the salinity changed from 31.14 psu to 32.64 psu. Therefore, the seasonal variations of water types in GCW were mainly determined by water temperature. The phytoplankton community consisted of 53 genera and 86 species, showing a relatively simple distribution. The phytoplankton cell density ranged from 2.2 to 689.2 cells mL-1, with an average of 577.2 cells mL-1, which was low in autumn and high in winter. The seasonal succession of phytoplankton dominant species was mainly diatoms during the whole year, Leptocylindrus danicus, Chaetoceros curvisetus, Skeletonema costatum-ls in summer, Paralia sulcata, Eucampia zodiacus in autumn, S. costatum-ls, Thalassiosira nordenskioeldii in winter, and S. costatum-ls, Asterionella glacialis in spring. In other words, the phytoplankton community showed high diversity in GCW throughout the year. According to the PCA, GCW were easily heated and cooled by radiant energy at lower depth, and the seasonal distributions of phytoplankton were determined by the supply of nutrients by re-fuelling of surface sediments due to the seawater mixing such as tidal mixing.