• Title/Summary/Keyword: tidal Inlet

Search Result 26, Processing Time 0.026 seconds

Accelerated Seaward Growth of Tidal Sand Bar during Giant Dyke Construction off the Mangyung River Mouth, West Coast of Korea

  • Lee, Hee-Jun;Choi, Kang-Won;Eo, Dae-Su;Chu, Yong-Shik
    • Journal of the korean society of oceanography
    • /
    • v.36 no.3
    • /
    • pp.72-82
    • /
    • 2001
  • The progress of giant dyke construction off the Mangyung and Donajin rivers, has yielded enormous impact on the estuarine environment, both hydrodynamically and sedimentologically. Especially the inter-dyke gap in the northern Saemankeum area, 4 km wide between Yamido and Piungdo, has acted as an artificial tidal inlet. Due to such a changed geometry, tidal regime has been reversed from being flood- to ebb-dominated with a directional change from NE-SW to E-W. As a result, a large tongue-like tidal sand bar (named Saemankeum Bar) has conspicuously grown seaward through the artificial tidal inlet. The Saemankeum Bar composed of well-sorted very fine sands (3.0-3.5${\phi}$) has grown at a rate of 1.63 km/yr for the past three yews (1996-1998). Such a rapid growth of the sand bar is attributed to enhanced sediment supply derived from the degradation of former tidal sand bars at the mouth of the Mangyung River. Eventually the reworking of the tidal sand bars also caused the pre-existing tidal channels to be wider, deeper and more straightened. All of these phenomena well examplify the critical effect of artificial modifications on the natural estuarine environments.

  • PDF

Seasonal Variations of Chemical Composition of the Estuary Water in Guang Yang Inlet from Mar. 1961 to Feb. 1962 (蟾津江 河口 干潟地 水質의 年間變化)

  • Won, Chong-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.176-197
    • /
    • 1962
  • Seasonal variations of chemical constituents of estuarine water at a definite station of the tidal flat in Guang Yang inlet have been determined for two days a month. The range and mean of the annual variations are as follows:Tidal variations through a year are as follows:1. Although the tidal value of pH is almost constant during one tidal cycle, it raises abruptly 0.1-0.2 intervals of pH value during the first period of flood.2. The lower values of chlorinity, magnesium and calcium contents have been determined the nearer the slack after ebb, and slightly higher during the first period of flood tide than the last of ebb. The tidal change of calcium contents is more remarkable than of magnesium.3. The higher per cent saturation values of dissolved oxygen, sometimes higher than 100 per cent, re determined the nearer the slack after ebb.4. The total nitrogen contents, relatively poor, varies accidentally during one tidal cycle, whereas phosphate-P and silicate-Si are rich at the slack after ebb and increase proportionally to the mixing percentage of fresh water. The average values, 52.2 and 18.5 of Si/P and N/P are greater than of the normal.5. The acid soluble iron contents, lower in winter than in summer, is also varies accidentally during one tidal cycle and the magnitude of the variation is large.6. The chemical composition considered from the value of Ca/Cl or Mg/Cl of estuarine water varies according to the chlorinity even at the high chlorinity of 18-19%.

  • PDF

A Study on Assessment of Tidal Stream Resources (조류자원의 평가에 관한 연구)

  • Yang, Chang-Jo;Choi, M.S.;Lee, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.309-309
    • /
    • 2011
  • This paper outlines extraction potential of tidal stream resources from the simplified channel in which flow is driven by a head difference between inlet and outlet. Energy extraction alters the flow within a simple channel, and extraction of 10% energy flux in a natural channel would give rise to a flow speed reduction of about 5.7%.

  • PDF

Simulation of Tidal Flow and Water Quality in Onsan Harbor System (온산 항만 시스템에서 조류와 수질 변화 시뮬레이션)

  • Kim, So-Yeon;Park, Seok-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 1999
  • Tidal flow and water quality were simulated in this paper to assess environmental impact caused by pier construction projects in Onsan harbor system. The Surfacewater Modeling System (SMS) was applied to the Onsan harbor system, where coastal reclamation and dredging were planned to build the piers. A finite element mesh was constructed and refined to cover the complicated geometry of the Onsan harbor and the proposed reclamation area. The time variable change of tidal height at harbor inlet was given as an input condition to tidal simulation. The water quality simulation was based on the discharge rate of suspended solids at the reclamation area. The simulation results have shown reasonable agreements with real situations in both tidal flow and water quality. According to the proposed plan, tidal flow and water quality were predicted during and after the pier construction. The tidal simulation study showed that there would be no discernible change of tidal current in the harbor except for the dredged area. The water quality simulation, however, predicted that suspended solids would increase significantly near the reclaimed and dredged areas during construction.

  • PDF

Preliminary Design and Performance Analysis of Ducted Tidal Turbine

  • Jo, Chul-Hee;Lee, Kang-Hee;Kim, Do-Youb;Goo, Chan-Hoe
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.176-185
    • /
    • 2015
  • Recently, focus has been placed on ocean energy resources because environmental concerns regarding the exploitation of hydrocarbons are increasing. Tidal current power, one of the ocean energy resources, has great potential worldwide due to its high energy density. The flow velocity is the most crucial factor for the power estimation of TCP(Tidal Current Power) system since the kinetic energy of the flow is proportional to the cube of the flow speed. So sufficient inflow speed to generate electricity from the tidal current power is necessary. A duct system can accelerate the flow velocity, which could expand the applicable area of TCP systems to relatively lower velocity sites. The shapes of the inlet and outlet could affect the flow rate inside the duct. To investigate the performance of the duct, various ducts were preliminary designed considering the entire system that is single-point moored TCP system and a series of simulations were carried out using ANSYS-CFX v13.0 CFD software. This study introduces a ducted turbine system that can be moored to a seabed. A performance estimation and comparison of results with conventional tidal converters were summarized in this paper.

Monitoring of the Estuary Sand Bar Related with Tidal Inlet in Namdaecheon Stream using Landsat Imagery (Landsat 위성 영상을 활용한 강원도 양양군 남대천 연안 하구사주 갯터짐 환경 모니터링)

  • Jang, Jiwon;Eom, Jinah;Cheong, Daekyo;Lee, Changwook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.481-493
    • /
    • 2017
  • Estuary sand bar of Namdaecheon Stream is located in Yangyang-gun, Gangwon-do in Korea. This unique place is situated between end of Namdaecheon Stream and East Sea. It is an important environment area of the global ecosystem from the transition zone of land and marine environments by forming a variety of coastal circumstance. Some endemic species should be protected which is appearing in the Namdaecheon Stream because of preservation for future generations. Especially, the salmon return to this stream as adults in order to breed which is more than 70 % of the salmon in Korea peninsular. The monitoring of estuary sand bar is need to analyze ecological environment and sustainable development with time. First of all we represents a different shape of estuary sand bar of Namdaecheon Stream from 1984 to 2015 using Landsat satellite imagery series. Particularly movement of the "tidal inlet" is most important factor to investigate the condition of the change for estuary sand bar. The location of tidal inlet is compared with precipitation, height of tide and oceanic current data according to time variation.

Analysis of Flow Velocity Change in Blade Installed Shroud System for Tidal Current Generation (블레이드가 설치된 조류발전용 쉬라우드 시스템 내 유속 변화 분석)

  • Lee, Uk Jae;Han, Seok Jong;Jeong, Shin Taek;Lee, Sang Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Flow velocity changes in the shroud system for tidal current power generation due to experimental flow velocities and blade geometry changes were analyzed by hydraulic experiment and numerical simulation. Through the hydraulic experiment, flow velocities at inlet of shroud system and RPM according to blade geometry were measured, and numerical simulation was used to analyze flow velocity changes in shroud. When the experimental flow velocity was increased by about 28% and the shape of the airfoil was applied, the measured flow velocity at the shroud inlet tended to increase by up to about 56%. On the other hand, when airfoil-shaped blades were installed, the flow velocity at the inlet tended to increase by up to 14% compared to conventional blades, and RPM was also the highest at the same conditions. The hydraulic experiment and numerical simulation results showed an error of about 13%, and the trends of the flow velocity changes in each result are similar. Numerical simulation of the flow velocity changes in the shroud showed that the flow velocity tended to increase 1.7 times at the front of the blade compared to the inlet. The results of the flow velocity change analysis in the shroud system obtained from this study will provide the basic data necessary for the development of efficient shroud system for tidal current power generation.

파ㆍ흐름 공존장 수치모델의 적용성

  • 이창호;김헌태;류청로;이인철
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.166-167
    • /
    • 2003
  • 파랑ㆍ흐름의 공존장에서 그 간섭작용은 Tidal inlet 와 하구부근와 같은 천해영역에서 중요한 물리적 현상이다. 이러한 파ㆍ흐름간섭현상은 파랑의 파고, 스펙트럼과 파향등을 현저하게 변화시키고, 하구와 inlet부근에 출현하는 사주(砂洲)등의 발생기구 및 해빈 안정화에 관계하는 중요한 요인이기 때문에 이에 대한 적절한 해석이 필요하다. 본 보고에서는 확장형 부시네스크방정식을 토대로 한 수치모델을 통하여 파ㆍ흐름 공존장에서의 적용성을 검토하고자 한다. (중략)

  • PDF

Study on Performance of Vertical-axis Tidal Turbines Applied to the Discharged Channel of Power Plant (조류발전용 수직축 터빈의 방수로 설치에 따른 성능에 관한 연구)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.274-281
    • /
    • 2015
  • Thermal and nuclear power plants on shore commonly use the sea water for cooling facility. Discharged cooling water has the high kinematic energy potential due to amount of water flux. Numerical analysis was made to find the suitable combinations between the arrangement of tidal turbines and the overall dimensions of the discharged channel. Several parameters such as the turbine diameter to inlet size, and the axial distance to turbine size were investigated. Power coefficients for various test conditions were also compared to see the effect of inlet configurations such as single inlet and dual inlet. For the single inlet, the mean power coefficient appeared to be gradually decreased with increasing distance, and the maximum power was obtained when the turbine diameter was same as the inlet diameter. For the dual inlet, the tendency was similar so that the better result when the turbine diameter was same as the inlet diameter. It is expected that the present methodology can be extensively utilized to harness the high kinetic energy flow of the discharge channel of power plant.

Theoretical Study on Assessment of Tidal Stream Resources (조류자원의 평가에 관한 이론적 연구)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • This paper outlines extraction potential of tidal stream resources from the simplified channel in which flow is driven by a head difference between inlet and outlet. Energy extraction alters the flow within a simple channel, and extraction of 10% energy flux in a natural channel would give rise to a flow speed reduction of about 5.7%. If 20% of the undisturbed energy flux is extracted, the flow speed is reduced by 11.3%. The simple channel also suggests that extractable energy might be higher if flow speed reductions are considered acceptable.