• Title/Summary/Keyword: threshold voltage analysis

Search Result 179, Processing Time 0.02 seconds

Analytical Model of Threshold Voltage for Negative Capacitance Junctionless Double Gate MOSFET Using Ferroelectric (강유전체를 이용한 음의 정전용량 무접합 이중 게이트 MOSFET의 문턱전압 모델)

  • Hakkee Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.129-135
    • /
    • 2023
  • An analytical threshold voltage model is presented to observe the change in threshold voltage shift ΔVth of a junctionless double gate MOSFET using ferroelectric-metal-SiO2 as a gate oxide film. The negative capacitance transistors using ferroelectric have the characteristics of increasing on-current and lowering off-current. The change in the threshold voltage of the transistor affects the power dissipation. Therefore, the change in the threshold voltage as a function of theferroelectric thickness is analyzed. The presented threshold voltage model is in a good agreement with the results of TCAD. As a results of our analysis using this analytical threshold voltage model, the change in the threshold voltage with respect to the change in the ferroelectric thickness showed that the threshold voltage increased with the increase of the absolute value of charges in the employed ferroelectric. This suggests that it is possible to obtain an optimum ferroelectric thickness at which the threshold voltage shift becomes 0 V by the voltage across the ferroelectric even when the channel length is reduced. It was also found that the ferroelectric thickness increased as the silicon thickness increased when the channel length was less than 30 nm, but the ferroelectric thickness decreased as the silicon thickness increased when the channel length was 30 nm or more in order to satisfy ΔVth=0.

Analysis of Doping Profile Dependent Threshold Voltage for DGMOSFET Using Gaussian Function

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.310-314
    • /
    • 2011
  • This paper has presented doping profile dependent threshold voltage for DGMOSFET using analytical transport model based on Gaussian function. Two dimensional analytical transport model has been derived from Poisson's equation for symmetrical Double Gate MOSFETs(DGMOSFETs). Threshold voltage roll-off is very important short channel effects(SCEs) for nano structures since it determines turn on/off of MOSFETs. Threshold voltage has to be constant with decrease of channel length, but it shows roll-off due to SCEs. This analytical transport model is used to obtain the dependence of threshold voltage on channel doping profile for DGMOSFET profiles. Also we have analyzed threshold voltage for structure of channel such as channel length and gate oxide thickness.

Analysis of Threshold Voltage Roll-Off and Drain Induced Barrier Lowering in Junction-Based and Junctionless Double Gate MOSFET (접합 및 무접합 이중게이트 MOSFET에 대한 문턱전압 이동 및 드레인 유도 장벽 감소 분석)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.104-109
    • /
    • 2019
  • An analytical threshold voltage model is proposed to analyze the threshold voltage roll-off and drain-induced barrier lowering (DIBL) for a junction-based double-gate (JBDG) MOSFET and a junction-less double-gate (JLDG) MOSFET. We used the series-type potential distribution function derived from the Poisson equation, and observed that it is sufficient to use n=1 due to the drastic decrease in eigenvalues when increasing the n of the series-type potential function. The threshold voltage derived from this threshold voltage model was in good agreement with the result of TCAD simulation. The threshold voltage roll-off of the JBDG MOSFET was about 57% better than that of the JLDG MOSFET for a channel length of 25 nm, channel thickness of 10 nm, and oxide thickness of 2 nm. The DIBL of the JBDG MOSFET was about 12% better than that of the JLDG MOSFET, at a gate metal work-function of 5 eV. It was also found that decreasing the work-function of the gate metal significantly reduces the DIBL.

Analysis of Transport Characteristics for FinFET Using Three Dimension Poisson's Equation

  • Jung, Hak-Kee;Han, Ji-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.361-365
    • /
    • 2009
  • This paper has been presented the transport characteristics of FinFET using the analytical potential model based on the Poisson's equation in subthreshold and threshold region. The threshold voltage is the most important factor of device design since threshold voltage decides ON/OFF of transistor. We have investigated the variations of threshold voltage and drain induced barrier lowing according to the variation of geometry such as the length, width and thickness of channel. The analytical potential model derived from the three dimensional Poisson's equation has been used since the channel electrostatics under threshold and subthreshold region is governed by the Poisson's equation. The appropriate boundary conditions for source/drain and gates has been also used to solve analytically the three dimensional Poisson's equation. Since the model is validated by comparing with the three dimensional numerical simulation, the subthreshold current is derived from this potential model. The threshold voltage is obtained from calculating the front gate bias when the drain current is $10^{-6}A$.

Analysis of Threshold Voltage for Symmetric and Asymmetric Oxide Structure of Double Gate MOSFET (이중게이트 MOSFET의 대칭 및 비대칭 산화막 구조에 대한 문턱전압 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2939-2945
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage for oxide structure of symmetric and asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET can be fabricated with different top and bottom gate oxide thickness, while the symmetric DGMOSFET has the same top and bottom gate oxide thickness. Therefore optimum threshold voltage is considered for top and bottom gate oxide thickness of asymmetric DGMOSFET, compared with the threshold voltage of symmetric DGMOSFET. To obtain the threshold voltage, the analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. We investigate for bottom gate voltage, channel length and thickness, and doping concentration how top and bottom gate oxide thickness influences on threshold voltage using this threshold voltage model. As a result, threshold voltage is greatly changed for oxide thickness, and we know the changing trend greatly differs with bottom gate voltage, channel length and thickness, and doping concentration.

Pixel Circuit with Threshold Voltage Compensation using a-IGZO TFT for AMOLED

  • Lee, Jae Pyo;Hwang, Jun Young;Bae, Byung Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.594-600
    • /
    • 2014
  • A threshold voltage compensation pixel circuit was developed for active-matrix organic light emitting diodes (AMOLEDs) using amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO-TFTs). Oxide TFTs are n-channel TFTs; therefore, we developed a circuit for the n-channel TFT characteristics. The proposed pixel circuit was verified and proved by circuit analysis and circuit simulations. The proposed circuit was able to compensate for the threshold voltage variations of the drive TFT in AMOLEDs. The error rate of the OLED current for a threshold voltage change of 3 V was as low as 1.5%.

Analysis of Threshold Voltage for Double Gate MOSFET of Symmetric and Asymmetric Oxide Structure (대칭 및 비대칭 산화막 구조의 이중게이트 MOSFET에 대한 문턱전압 분석)

  • Jung, Hakkee;Kwon, Ohshin;Jeong, Dongsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.755-758
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage for oxide structure of symmetric and asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET can be fabricated with different top and bottom gate oxide thickness, while the symmetric DGMOSFET has the same top and bottom gate oxide thickness. Therefore optimum threshold voltage is considered for top and bottom gate oxide thickness of asymmetric DGMOSFET, compared with the threshold voltage of symmetric DGMOSFET. To obtain the threshold voltage, the analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. We investigate for bottom gate voltage, channel length and thickness, and doping concentration how top and bottom gate oxide thickness influences on threshold voltage using this threshold voltage model. As a result, threshold voltage is greatly changed for oxide thickness, and we know the changing trend very differs with bottom gate voltage, channel length and thickness, and doping concentration.

  • PDF

Analysis of Channel Doping Profile Dependent Threshold Voltage Characteristics for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑분포의 형태에 따른 문턱전압특성분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1338-1342
    • /
    • 2011
  • In this paper, threshold voltage characteristics have been analyzed as one of short channel effects occurred in double gate(DG)MOSFET to be next-generation devices. The Gaussian function to be nearly experimental distribution has been used as carrier distribution to solve Poisson's equation, and threshold voltage has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and threshold voltage has been obtained from this model. Since threshold voltage has been defined as gate voltage when surface potential is twice of Fermi potential, threshold voltage has been derived from analytical model of surface potential. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the threshold voltage characteristics have been considered according to the doping profile of DGMOSFET.

Analysis of Subthreshold Characteristics for Device Parameter of DGMOSFET Using Gaussian Function

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.733-737
    • /
    • 2011
  • This paper has studied subthreshold characteristics for double gate(DG) MOSFET using Gaussian function in solving Poisson's equation. Typical two dimensional analytical transport models have been presented for symmetrical Double Gate MOSFETs (DGMOSFETs). Subthreshold swing and threshold voltage are very important factors for digital devices because of determination of ON and OFF. In general, subthreshold swings have to be under 100mV/dec, and threshold voltage roll-off small in short channel devices. These models are used to obtain the change of subthreshold swings and threshold voltage for DGMOSFET according to channel doping profiles. Also subthreshold swings and threshold voltages have been analyzed for device parameters such as channel length, channel thickness and channel doping profiles.

Subthreshold Current Model for Threshold Voltage Shift Analysis in Junctionless Cylindrical Surrounding Gate(CSG) MOSFET (무접합 원통형 게이트 MOSFET에서 문턱전압이동 분석을 위한 문턱전압이하 전류 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.789-794
    • /
    • 2017
  • Subthreshold current model is presented using analytical potential distribution of junctionless cylindrical surrounding-gate (CSG) MOSFET and threshold voltage shift is analyzed by this model. Junctionless CSG MOSFET is significantly outstanding for controllability of gate to carrier flow due to channel surrounded by gate. Poisson's equation is solved using parabolic potential distribution, and subthreshold current model is suggested by center potential distribution derived. Threshold voltage is defined as gate voltage corresponding to subthreshold current of $0.1{\mu}A$, and compared with result of two dimensional simulation. Since results between this model and 2D simulation are good agreement, threshold voltage shift is investigated for channel dimension and doping concentration of junctionless CSG MOSFET. As a result, threshold voltage shift increases for large channel radius and oxide thickness. It is resultingly shown that threshold voltage increases for the large difference of doping concentrations between source/drain and channel.