• Title/Summary/Keyword: threshold algorithm

Search Result 1,450, Processing Time 0.032 seconds

A Design and Implementation of Threshold-adjusted Em Codec (Threshold-adjusted EZW Codec의 설계와 구현)

  • Chae, Hui-Jung;Lee, Ho-Seok
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.57-66
    • /
    • 2002
  • In this paper, we propose a method for the improvement of EZW encoding algorithm. The EZW algorithm encodes wavelet coefficients using 4 symbols such as POS(POsitive), NEG(NEGative), IZ(Isolated Zero), and ZTR(ZeroTreeRoot) which are determined by the significance of wavelet coefficients. In this paper, we applied threshold to wavelet coefficients to improve the EZW algorithm. The coefficients below the threshold are adjusted to zero to generate more ZTR symbols in the encoding process. The overall EZW image compression system is constructed using run-length coding and arithmetic coding. The system shows remarkable results for various images. We finally present experimentation results.

Applying Deep Reinforcement Learning to Improve Throughput and Reduce Collision Rate in IEEE 802.11 Networks

  • Ke, Chih-Heng;Astuti, Lia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.334-349
    • /
    • 2022
  • The effectiveness of Wi-Fi networks is greatly influenced by the optimization of contention window (CW) parameters. Unfortunately, the conventional approach employed by IEEE 802.11 wireless networks is not scalable enough to sustain consistent performance for the increasing number of stations. Yet, it is still the default when accessing channels for single-users of 802.11 transmissions. Recently, there has been a spike in attempts to enhance network performance using a machine learning (ML) technique known as reinforcement learning (RL). Its advantage is interacting with the surrounding environment and making decisions based on its own experience. Deep RL (DRL) uses deep neural networks (DNN) to deal with more complex environments (such as continuous state spaces or actions spaces) and to get optimum rewards. As a result, we present a new approach of CW control mechanism, which is termed as contention window threshold (CWThreshold). It uses the DRL principle to define the threshold value and learn optimal settings under various network scenarios. We demonstrate our proposed method, known as a smart exponential-threshold-linear backoff algorithm with a deep Q-learning network (SETL-DQN). The simulation results show that our proposed SETL-DQN algorithm can effectively improve the throughput and reduce the collision rates.

An Enhanced Step Detection Algorithm with Threshold Function under Low Sampling Rate (낮은 샘플링 주파수에서 임계 함수를 사용한 개선된 걸음 검출 알고리즘)

  • Kim, Boyeon;Chang, Yunseok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2015
  • At the case of peak threshold algorithm, 3-axes data should sample step data over 20 Hz to get sufficient accuracy. But most of the digital sensors like 3-axes accelerometer have very low sampling rate caused by low data communication speed on limited SPI or $I^2C$ bandwidth of the low-cost MPU for ubiquitous devices. If the data transfer rate of the 3-axes accelerometer is getting slow, the sampling rate also slows down and it finally degrades the data accuracy. In this study, we proved there is a distinct functional relation between the sampling rate and threshold on the peak threshold step detection algorithm under the 20Hz frequency, and made a threshold function through the experiments. As a result of experiments, when we apply threshold value from the threshold function instead of fixed threshold value, the step detection error rate can be lessen about 1.2% or under. Therefore, we can suggest a peak threshold based new step detection algorithm with threshold function and it can enhance the accuracy of step detection and step count. This algorithm not only can be applied on a digital step counter design, but also can be adopted any other low-cost ubiquitous sensor devices subjected on low sampling rate.

Node Monitoring Algorithm with Piecewise Linear Function Approximation for Efficient LDPC Decoding (Node Monitoring 알고리듬과 NP 방법을 사용한 효율적인 LDPC 복호방법)

  • Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2011
  • In this paper, we propose an efficient algorithm for reducing the complexity of LDPC code decoding by using node monitoring (NM) and Piecewise Linear Function Approximation (NP). This NM algorithm is based on a new node-threshold method, and the message passing algorithm. Piecewise linear function approximation is used to reduce the complexity for more. This algorithm was simulated in order to verify its efficiency. Simulation results show that the complexity of our NM algorithm is reduced to about 20%, compared with thoes of well-known method.

A Study on the Enhancement of Priority control Algorithm for ATM Network (ATM 망용 우선순위제어 알고리즘의 개선에 관한 연구)

  • 정상국;진용옥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.9-17
    • /
    • 1994
  • This paper proposes Double queue threshold QLT(Queue Length Threshold) algorithm and Hysteresis effect QLT algorithm. as being DPS(Dynamic Priority Scheduling) techniques. in order to advance the processing of multiple class traffics. Also, the performance of the proposed algorithms is analyzed through computer simulations,and the priority scheduling is analyzed using a retrial queue with two types of calls. Our simulation results show that the performance of the proposed Double queue length threshold QLT algorithm is superior to that of the conventinal QLT algorithm for 2 or more classes delay sensitive traffics. Also we find that Hysteresis effecT QLT algorithm is better mechanism than that of the existing QLT for real time and non-real time traffics.

  • PDF

ModifiedFAST: A New Optimal Feature Subset Selection Algorithm

  • Nagpal, Arpita;Gaur, Deepti
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.113-122
    • /
    • 2015
  • Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.

A Study on the Reliability Comparison of Median Frequency and Spike Parameter and the Improved Spike Detection Algorithm for the Muscle Fatigue Measurement (근피로도 측정을 위한 중간 주파수와 Spike 파라미터의 신뢰도 비교 및 향상된 Spike 검출 알고리듬에 관한 연구)

  • 이성주;홍기룡;이태우;이상훈;김성환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.380-388
    • /
    • 2004
  • This study proposed an improved spike detection algorithm which automatically detects suitable spike threshold on the amplitude of surface electromyography(SEMG) signal during isometric contraction. The EMG data from the low back muscles was obtained in six channels and the proposed signal processing algorithm is compared with the median frequency and Gabriel's spike parameter. As a result, the reliability of spike parameter was inferior to the median frequency. This fact indicates that a spike parameter is inadequate for analysis of multi-channel EMG signal. Because of uncertainty of fixed spike threshold, the improved spike detection algorithm was proposed. It automatically detects suitable spike threshold depending on the amplitude of the EMG signal, and the proposed algorithm was able to detect optimal threshold based on mCFAR(modified Constant False Alarm Rate) in the every EMG channel. In conclusion, from the reliability points of view, neither median frequency nor existing spike detection algorithm was superior to the proposed method.

Indexing Algorithm Using Dynamic Threshold (동적임계값을 이용한 인덱싱 알고리즘)

  • 이문우;박종운;장종환
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.389-396
    • /
    • 2001
  • In detection of a scene change of the moving pictures which has massive information capacity, the temporal sampling method has a faster searching speed and lower missing scene change detection than the sequential searching method for the whole moving pictures, yet employed searching algorithm and detection interval greatly affect missing frame and searching precision. In this study, the whole moving pictures were primarily retrieved threshold by the temporal difference of histogram scene change detection method. We suggested a dynamic threshold algorithm using cut detection interval and derived an equation formula to determine optimal primary retrieval threshold which can cut detection interval computation. Experimental results show that the proposed dynamic threshold algorithm using cut detection interval method works up about 30 percent in precision of performance than the sequential searching method.

  • PDF

Voice Activity Detection Algorithm base on Radial Basis Function Networks with Dual Threshold (Radial Basis Function Networks를 이용한 이중 임계값 방식의 음성구간 검출기)

  • Kim Hong lk;Park Sung Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1660-1668
    • /
    • 2004
  • This paper proposes a Voice Activity Detection (VAD) algorithm based on Radial Basis Function (RBF) network using dual threshold. The k-means clustering and Least Mean Square (LMS) algorithm are used to upade the RBF network to the underlying speech condition. The inputs for RBF are the three parameters in a Code Exited Linear Prediction (CELP) coder, which works stably under various background noise levels. Dual hangover threshold applies in BRF-VAD for reducing error, because threshold value has trade off effect in VAD decision. The experimental result show that the proposed VAD algorithm achieves better performance than G.729 Annex B at any noise level.

An Effective Detection of Bimean and its Application into Image Segmentation by an Interative Algorithm Method (반복적인 알고리즘 방법에 의한 효과적인 양평균 검출 및 영상분할에 응용)

  • Heo, Pil-U
    • 연구논문집
    • /
    • s.25
    • /
    • pp.147-154
    • /
    • 1995
  • In this paper, we discussed the convergence and the properties of an iterative algorithm method in order to improve a bimean clustering algorithm. This algorithm that we have discussed choose automatically an optimum threshold as a result of an iterative process, successive iterations providing increasingly cleaner extractions of the object region, The iterative approach of a proposed algorithm is seen to select an appropriate threshold for the low contrast images.

  • PDF