• 제목/요약/키워드: three-phase rectifier

Search Result 215, Processing Time 0.026 seconds

A study on the CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) DC/DC Converter with Phase Shift Control (위상이동 방식을 적용한 CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) DC/DC 컨버터에 관한 연구)

  • Lee, Dong-Hyun;Kim, Yong;Bae, Jin-Yong;Kim, Pill-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.159-162
    • /
    • 2004
  • The paper proposes the coupled inductor rectifier of Three Level DC/DC converter CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) achieves Zero Voltage Switching (ZVS) for the switches in a wide load range and Zero Current Switching (ZCS) in a light load range. Advantages and disadvantages of this topology compared to the conventional Center Tapped TL Converter are discussed. Experimental evaluation results obtained on a 27V 60A DC/DC converter prototype for the 1.8kW 40kHz IGBT based experimental circuit.

  • PDF

Analysis of Input Characteristic in the Rectifier for Output Filter with Unbalanced Supply Voltages (불평형 전원전압을 갖는 정류시스템에서 출력필터에 따른 입력 특성 분석)

  • Kang, Su-Heon;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.195-202
    • /
    • 2005
  • The rectifier characteristics and the quality of the input current worsens with the increase of unbalances or harmonics of the supply voltages. Rectifier input current harmonics interfere with proper power system operation, reduce rectifier power factor, and limit the power available from a given source. It is of importance to select appropriately the rectifier's output filter inductance to determine the rectifier input current waveform, the input current harmonics, and the power factor. This paper presents a quantitative analysis of single and three phase rectifier input current harmonics, total harmonic distortion, and power factor as a function of the output filter inductance under balanced and unbalanced conditions. Also, its performance under the supply voltage including harmonics be investigated. These results provide a reference for selecting reasonable rectifier's output filter inductance for given harmonics or power factor criterion.

  • PDF

A Novel Control Scheme of Three-Phase PWM Rectifiers Eliminating AC-Side Sensors (교류측 센서를 제거한 3상 PWM 정류기의 새로운 제어)

  • 이동춘;이지명;임대식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.592-600
    • /
    • 2000
  • In this paper, a novel control scheme of three-phase PWM rectifiers using only dc-side sensors is proposed. The phase currents are reconstructed from switching states of the rectifier and the dc output current. For effective current control, the currents are estimated by a predictive state observer. Also, both the phase angle and the magnitude of the source voltage are estimated by controlling the deviation between the model current and the system current to be zero. The validity of the proposed ac phase and current sensorless technique has been verified by experimental results.

  • PDF

A New Unity Power Factor Rectifier System using an Active Waveshaping Technique

  • Choi, Se-Wan;Bae, Young-Sang
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.173-179
    • /
    • 2009
  • This paper proposes a new three-phase diode rectifier system with a sinusoidal input current at unity power factor and a regulated and isolated output voltage at low level. The inherent natural wave-shaping capability of the reduced kVA polyphase transformer together with an active current wave-shaping technique results in a significant reduction of input and output filter requirements associated with switching ripple and EMI. The operation principles are described along with a design example and a comparative evaluation. Experimental results on a 1.5kW prototype are provided to validate the proposed concept.

Study on the Capacitor-self-excited Three-phase Synchronous Generator (A 캐패시터 자력식 삼상동기발전기에 관한 연구)

  • 정연택;김영동
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.11
    • /
    • pp.425-432
    • /
    • 1984
  • This paper is to propse a new self-excitation method of synchronous generator. Instead of conventional exciter of synchronous generator, the additional winding which is arranged in addition to the armature winding, is used in this generator. The output terminal of the additional winding is connected to a capacitor and to a full wave rectifier in series. In this configuration, one source double excitation which is composed of capacitor-self-excitation by lead urrent and direct current excitation by rectifier, is induced. The result is that` The excetation efficency is improved greatly and output waveform is improved also. In three-phase synchronous generator using the new method of the one source double excitation, voltage element (shunt characteristics) and current element (series characteristics)are compounded in scalar by adapting star-point-open-rectifier system. The result is as following` The effect of load power factor angle on voltage regulation is reduced greatly, compound characteristics is become manifold by controlling capacity of capacitor, and transient response is improved.

  • PDF

A Multipulse-Voltage Source Rectifier System with a Three-Phase Diode Circuit in order to improve the Input Current Waveforms (입력 전류 파형 개선을 위한 다펄스 3상 다이오드 전압원 정류 시스템)

  • Im, Seong-Goun;Park, Hyun-Chul;Lee, Seong-Ryong;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.853-855
    • /
    • 1993
  • In this paper, a further improved system obtaining very low distorted waveforms of input ac currents of three phase rectifier circuit is proposed. The proposed system consists of an uncomplicated 24 pulse diode bridge rectifier that is transformerless, by adding only switching circuit which consists of two switchs to conventional system. Also to optimum the effectiveness or the harmonic reduction, the optimum turn ratio of an autotransformer and the optimum switching control angle are decided by computer simulation. And then, the voltage waveform obtained has a total harmonic distortion of 8.1%, and the predominant harmonics 23th and 25th. This paper describes operation principle, analysis of the waveforms of input voltage and current. The theoretial results are verified through simulation.

  • PDF

A Three-Phase High Frequency Semi-Controlled Battery Charging Power Converter for Plug-In Hybrid Electric Vehicles

  • Amin, Mahmoud M.;Mohammed, Osama A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.490-498
    • /
    • 2011
  • This paper presents a novel analysis, design, and implementation of a battery charging three-phase high frequency semi-controlled power converter feasible for plug-in hybrid electric vehicles. The main advantages of the proposed topology include high efficiency; due to lower power losses and reduced number of switching elements, high output power density realization, and reduced passive component ratings proportionally to the frequency. Additional advantages also include grid economic utilization by insuring unity power factor operation under different possible conditions and robustness since short-circuit through a leg is not possible. A high but acceptable total harmonic distortion of the generator currents is introduced in the proposed topology which can be viewed as a minor disadvantage when compared to traditional boost rectifiers. A hysteresis control algorithm is proposed to achieve lower current harmonic distortion for the rectifier operation. The rectifier topology concept, the principle of operation, and control scheme are presented. Additionally, a dc-dc converter is also employed in the rectifier-battery connection. Test results on 50-kHz power converter system are presented and discussed to confirm the effectiveness of the proposed topology for PHEV applications.

DC Link Voltage Controller for Three Phase Vienna Rectifier with Compensated Load Current and Duty (부하 전류 및 듀티를 보상한 3상 비엔나 정류기의 출력 전압 제어 기법)

  • Lee, Seung-Tae;Lim, Jae-Uk;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • A new dc link voltage controller for a three-phase Vienna rectifier is proposed in this study. This method uses load current and duty information to control dc link voltage. The load current affects the capacitor current and varies the output voltage. Existing methods do not perfectly consider the load current. By considering load current with duty compensation in the proposed method, the transient response is improved by the load variation regardless of the input voltage. The effectiveness of the proposed method is compared with other control methods when the load changes rapidly using PSIM simulation and experiment.

Direct Power Control of Three-Phase Boost Rectifiers by using a Sliding-Mode Scheme

  • Kim, Ju-Hye;Jou, Sung-Tak;Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1000-1007
    • /
    • 2013
  • This paper proposes a sliding-mode-based direct power control (DPC) method in a three-phase boost rectifier without the use of a voltage sensor. This sliding-mode-based DPC is used to improve transient-state response characteristics. This DPC can eliminate voltage sensors by calculating a voltage using a sensorless method, thus considerably reducing cost. This DPC first presents an effective algorithm that does not significantly affect the previous performance and does not need a voltage sensor. Thereafter, the effectiveness of the algorithm is verified by simulations and experiments.

Three-Phase Diode Rectifier Employing Soft Switching Methods (소프트 스위칭 방식의 삼상 다이오드 정류기)

  • Moon, Gun-Woo;Lee, Jung-Hoon;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.847-849
    • /
    • 1993
  • Two new schemes of three-phase rectifier using softing switching methods are introduced for the input power factor correction. These three-phase rectifiers are employed the zero voltage switching for the parallel resonant and zero current switching for the series resonant AC link type rectifiers. The dynamic modeling and discontinuous integral cycle mode control technique are also presented. With the proposed circuits and control technique, the high power factor can be obtained.

  • PDF