• 제목/요약/키워드: three-phase fluidized bed

검색결과 27건 처리시간 0.022초

삼상유동층 생물반응기에서의 연속식 Xanthan 발효 (Continuous Xanthan Fermentations in a Three-Phase Fluidized Bed Bioreactor)

  • 서일순;노희찬;허충회
    • KSBB Journal
    • /
    • 제17권1호
    • /
    • pp.26-32
    • /
    • 2002
  • 세포의 다당류 xanthan을 생산하기 위하여 호기성 박테리아 X. campestris를 9 L 삼상유동층 생물반응기에서 연속적으로 배양하였다. 고점도 배양액에서 공기 기포를 분쇄하기 위하여 직경 8 mm 유리 유동입자를 사용하였다. 반응기 희석률을 증가시킴에 따라 세포 단위질량 당 xanthan 생성속도 및 생성된 xanthan의 분자량은 증가하였다. 산소공급제한이 발생하지 않을 경우 연속발효에서의 xanthan 비생성속도는 회분식 발효에서 제안된 상관식의 예측결과 보다 상당히 높은 값을 보였다.

Approximated Solution of Model for Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi Jeong-Woo;Min Junhong;Lee Won-Hong;Lee Sang Baek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.65-70
    • /
    • 2000
  • An approximated analytical solution of mathematical model for the three phase fluidized bed bioreactor (TFBBR) was proposed using the linearization technique to describe oxygen utilization rate in wastewater treatment. The validation of the model was done in comparison with the experimental results. Satisfactory agreement was obtained in the comparison of approximated analytical solution and numerical solution in the oxygen concentration profile of a TFBBR. The approximated solutions for three modes of the liquid phase flow were compared. The proposed model was able to predict the biomass concentration, dissolved oxygen concentration the height of efficient column, and the removal efficiency.

  • PDF

3상 유동층생물반응기를 이용한 메탄처리에 관한 연구 (Removal of Methane Using a Three Phase Fluidized Bed Bioreactor)

  • 김동욱;서혁상
    • KSBB Journal
    • /
    • 제13권2호
    • /
    • pp.141-146
    • /
    • 1998
  • To remove the low concentration of methane biologically, a three phase fluidized bed bioreactor immobilized with Methylosinus trichosporium OB3b was used. Optimum pH, temperature and bed height for the operation were pH7.0, 30$^\circ C$ and 150cm, respectively. For the inlet methane concentration of 100-400ppm and flow rate of 2-4L/min, the removal efficiencies of the bioreactor using the activated carbon as a carrier were the range of 54-71%, whereas those using the biosand were the range of 45-56%. It was found that activated carbon was more efficient than the biosand for the removal of methane. When aeration tank was equipped with the bioreactor, the removal efficiency increased to 6-13% and maximum removal rate obtained in the experiment was 1184mg.CH$_4$/min.

  • PDF

삼상 유동층 반응조를 이용한 해수 순환 여과 시설의 수처리 (Water Treatment of Seawater Recirculating Aquaculture System by Using Three Phase Fluidized Bed Reactor)

  • 이병헌;최혁;류종수
    • 한국양식학회지
    • /
    • 제13권2호
    • /
    • pp.137-145
    • /
    • 2000
  • 삼상 유동층 반응조의 수처리 효율을 검토하기 위해 해수 순환여과 시설을 운전하였다. 수처리 시스템은 유동층 반응조, 카트리지 필터, 오존접촉조로 구성되어 있고, 전체 운전기간동안 사육조내 수질인자별 평균농도는 각각 COD 9mg/L, 총암모니아(TAN) 0.22mg/L, 아질산성 질소 0.05mg/L, 질산성 질소 20mg/L, 탁도 3.64 NTU, SS 9.5mg/L, pH 7.6, 알칼리도 70mg/L 등으로 나타나 양호한 수질조건을 유지할 수 있었다. 유동층 반응조의 TAN 부하량 범위는 4.3~32.9 g/$m^3$/day였고, 평균 제거율은 20 g/$m^3$/day으로 나타났다. 각 반응조의 TAN 제거율은 47~60%로 나타나 해수에서도 효과적인 암모니아 제거 특성을 나타내었다. 또한 유출수의 비이온성 암모니아 농도는 0.002 mg/L이하로 유지 할 수 있었다

  • PDF

Effects of Operating Variables on the Solid Circulation Rate in a Three-phase Circulating Fluidized Bed

  • Kim, Min Kon;Hong, Sung Kyu;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • 제53권4호
    • /
    • pp.440-444
    • /
    • 2015
  • Effects of operating variables on the solid circulation rate were investigated in a three-phase circulating fluidized bed, of which inside diameter was 0.102m and height was 3.5m, respectively. Gas velocity, primary and secondary liquid velocities, particle size and height of solid particles piled up in the solid recycle device were chosen as operating variables. The solid circulation rate increased with increasing primary and secondary liquid velocities and height of solid particles piled up in the solid recycle device, but decreased with increasing particle size. The value of solid circulation rate decreased only slightly with increasing gas velocity in the riser. The values of solid circulation rate were well correlated in terms of dimensionless groups within the experimental conditions.

Numerical Investigation of Bubble Characteristics in a Two-Dimensional Fluidized Bed

  • Kang, Kyung-Tae;Kook, Jeong-Jin;Park, Seung-Ho
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.52-57
    • /
    • 2002
  • A numerical investigation using a commercial CFD program of the Inter-Phase Slip Algorithm has been carried out for detail characteristics of particle motions and bubble behaviors in a two dimensional fluidized bed. The bed simulated has been operated with three different distributor geometries, such as bubble cap, nozzle, and perforated plate types. Experiments using a slit-type two-dimensional fluidized bed and a cylinder-type fluidized bed have been performed in order to confirm the simulation model. In addition, the numerical results are compared with the wellknown correlation of bubble sizes and bubble rising velocities by Mori and Wen [1]. The simulation model that we applied is shown to be useful to understand the relation between bubble behaviors and distributor geometries.

  • PDF

Biofilm Processes for Volume Decrease in Recirculating Water Treatment Systems for Aquaculture

  • Kim Jeong-Sook;Yoon Gil-Ha;Ghim See-Jun;Kang Lim-Seok;Lee Byung-Hun
    • Fisheries and Aquatic Sciences
    • /
    • 제1권2호
    • /
    • pp.242-249
    • /
    • 1998
  • The engineering aspect of water treatment processes in the recirculating aquaculture system was studied. To recycle the water in the aquaculture system, a wastewater treatment process was required to maintain high water quality for the growth and health of the cultured fish. In this study, three different biofilm processes were used to reduce the concentration of organic matters and ammonia from the recirculating water - two phase fluidized bed, three phase fluidized bed, and trickling filter. The objectives of this research were to evaluate the optimum treatment conditions of the biofilm processes for the recirculating aquaculture system, and thereby reduce the volume of biofilm processes, which are commonly used for the recycle water treatment processes for aquaculture. The result of this study showed that the removal efficiency of organic matters by trickling filter was found to be lower than that of the fluidized bed. In the trickling filter system, anthracite showed better organic removal efficiency than crushed stone as a media. In the two phase fluidized bed, the maximum removal efficiency of either organics or ammonia was obtained when both the packing rate of media was maintained to $40\%$ of total reactor depth excepting sediment zone and the bed expansion rate was maintained to $100\%$. When 100 tilapia (Oreochromis niloticus) of each average 200g was reared, the pollutant production rate was 0.07g $NH_4\;^+-N/kg$ fish/day and 0.06g P04-3-P/kg fish/day, and sludge production rate was 0.39 g SS/kg fish/day. In the two phase and three phase fluidized bed, the volume of water treatment tank could be calculated from an empirical equation by using the relationship between the influent COD to $NH_4\;^+-N$ ratio (C/N, -), media concentration (Cm, g/L), influent ammonia nitrogen concentration (Ni, mg/L), effluent ammonia nitrogen concentration (Ne, mg/L), bed expansion rate $(E,\;\%)$, and influent flowrate $(Q,\;m^3/hr)$. The empirical equation from this study is $$V_2\;=\;10^{3.1279}\;C/N^{3.5461}\;C_m\;^{-3.7473}\;N_i\;^{4.6477}\;E^{0.0326}\;N_e\;^{-0..8849}\;Q\;(Two\;Phase\;FB) V_3\;=\;10^{11.7507}\;C/N^{-1.2330}\;C_m\;^{-6.5715}\;N_i\;^{1.5091}\;N_e\;^{-1.8489}\;Q (Three\;Phase\;FB)$$

  • PDF

Hydrogen Sulfide Removal by Immobilized Thiobacillus novellas on $SiO_2$ in a Fluidized Bed Reactor

  • Cha, Jin-Myung;Shin, Hyun-Jae;Roh, Sung-Hee;Kim, Sun-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.320-324
    • /
    • 2007
  • The removal of hydrogen sulfide ($H_2S$) from aqueous media was investigated using Thiobacillus novellas cells immobilized on a $SiO_2$ carrier (biosand). The optimal growth conditions for the bacterial strain were $30^{\circ}C$ and initial pH of 7.0. The main product of hydrogen sulfide oxidation by T. novellus was identified as the sulfate ion. A removal efficiency of 98% was maintained in the three-phase fluidized-bed reactor, whereas the efficiency was reduced to 90% for the two-phase fluidized-bed reactor and 68% for the two-phase reactor without cells. The maximum gas removal capacity for the system was 254 g $H_2S/m^3/h$ when the inlet $H_2S$ loading was $300g/m^3/h(1,500ppm)$. Stable operation of the immobilized reactor was possible for 20 days with the inlet $H_2S$ concentration held to 1,100 ppm. The fluidized bed bioreactor appeared to be an effective means for controlling hydrogen sulfide emissions.

Removal of Hydrogen Sulfide and Methylmercaptan Using Thiobacillus in a Three Phase Fluidized Bed Bioreactor

  • KIM, KYUNG-RAN;KWANG-JOONG OH;KYUNG-YONG PARK;DONGUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.265-270
    • /
    • 1999
  • A three phase fluidized bed bioreactor immobilized with Thiobacillus sp. IW was tested to remove hydrogen sulfide and methylmercaptan with high loading rate. In a single gas treatment, the bioreactor removed 92- 98% of hydrogen sulfide with loading rate of 15- 66 g/l/h and removed 87-98% of methylmercaptan with loading rate of 14-60 gl/sup -1/h/sup -1/. In the mixed gas treatment, the removal efficiencies of hydrogen sulfide and methylmercaptan maintained at 89-99% for various inlet loading rates and were not affected by the inlet loading ratio of both gases in low loading rates. When the inlet concentration of methylmercaptan increased 3.8 times and was maintained for 30 h to observe the response of the bioreactor to sudden environmental change, the removal efficiency of methylmercaptan was maintained at an average of 91%.

  • PDF