• 제목/요약/키워드: three-phase Interleaved DC-DC converter

검색결과 25건 처리시간 0.021초

전기자동차용 리튬이온 배터리 급속충전장치 설계와 제어 (A Design and Control of Rapid Electric Vehicle Charging System for Lithium-Ion Battery)

  • 강태원;서용석;박현철;강병익;김성훈
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.26-36
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어 (Zero Torque Control of Switched Reluctance Motor for Integral Charging)

  • 라쉬디;나마찌;세헤이안;이동희;안진우
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

PEBB Based Bi-directional Rapid Charging System for EV Traction Battery

  • Kang, Taewon;Chae, Beomseok;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.323-324
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

Y결선 정류기를 이용한 3상 인터리브드 LLC 공진형 컨버터의 출력전류리플 밸런싱 (Output Current Ripple Balancing for Three Phase Interleaved LLC Resonant Converter Using a Y-connection Rectifier)

  • 안기정;정지훈;김호성;류명효;백주원;김인동
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.377-378
    • /
    • 2012
  • DC-DC 컨버터를 인터리브 방식으로 제어하면 출력 전류 리플이 저감되고, 출력 필터 커패시터의 용량을 줄일 수 있다. 하지만 공진(Resonance)을 통해 전력을 전달하는 LLC 공진형 컨버터의 경우 회로를 구성하는 공진 인덕터 및 공진 커패시터의 오차(Tolerance)로 인해 출력 전류 리플의 언밸런스가 심화될 수 있다. 따라서 이를 개선할 수 있는 방법에 대한 연구가 필요하다. 본 논문에서는 Y결선 정류기를 이용한 3상 인터리브드 LLC 공진형 컨버터의 출력 전류 리플 밸런싱 방법을 제안한다. 제안된 방법은 3상 인터리브드 LLC 공진형 컨버터와 각 LLC 공진형 컨버터 앞단의 Bridgeless PFC가 독립적으로 추가되어 회로가 구성된다. 3상 인터리브드 LLC 공진형 컨버터는 분할된 위상으로 비독립적으로 제어하며 출력 전류 리플의 언밸런스를 Bridgeless PFC의 출력 전압을 가변함으로써 개선할 수 있는 방법을 제안하고 이를 시뮬레이션(PSIM)을 통해 제안된 밸런싱 방법을 검증하였다.

  • PDF