• 제목/요약/키워드: three-phase Interleaved DC-DC converter

검색결과 25건 처리시간 0.022초

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

고효율 달성을 위한 개선된 양방향 3상 인터리브드 DC-DC 컨버터 (Improved Bidirectional Three Phase Interleaved DC-DC Converter for High Efficiency)

  • 김대중;박진혁;이교범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.29-30
    • /
    • 2014
  • 본 논문에서는 Zero Voltage Switching (ZVS)이 가능한 양방향 3상 인터리브드 DC-DC 컨버터를 제안한다. 기존의 일반적인 하프 브릿지형 양방향 DC-DC 컨버터와 달리 ZVS를 만족시킴으로써 고효율을 달성하였고, 3상 인터리브드 방식을 적용함으로써 출력 전류 리플을 저감시키고 스위치의 정격을 낮출 수 있도록 하였다. 또한 제안하는 토폴로지는 PSIM 시뮬레이션을 통해 검증하였다.

  • PDF

RTGC의 연료절감을 위한 전압 보상 컨버터에 관한 연구 (A Study on the Voltage Compensation Converter to decrease fuel consumption of RTGC)

  • 바이사;류지수;한동화;이영진;이상호;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.280-282
    • /
    • 2011
  • This paper presents a development of voltage compensation dc/dc converter to decrease fuel consumption of RTGC system. We used 3-phase interleaved converter, which has the same structure as the commercially available three-phase inverter, is used. RTGC system is supplied the power from diesel-engine generator. According to power demand, engine speed is varying 20~60Hz, and voltage is varying 210Vac ~ 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control. The perpormance of converter is evaluated through several experiments with a real RTGC. Proposed system can cut down fuel consumption by 36% at idle mode operation.

  • PDF

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.

새로운 소프트스위칭 3레벨 Flying Capacitor 컨버터 (A New Soft-Switching Three-Level Flying Capacitor Converter)

  • 김재훈;김선주;최세완
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.484-489
    • /
    • 2020
  • This study proposes a new soft-switching three-level flying capacitor converter with low filter inductance. The proposed converter can achieve zero voltage switching (ZVS) turn-on of all switches by using auxiliary components La and Ca. It can also reduce filter inductance because the applied voltage of the filter inductor is decreased by using the flying capacitor. Furthermore, filter inductance can be reduced because the operating frequency of the filter inductor is doubled by the phase shifting between switches S3 and S4. The operation principle, design of passive components for ZVS turn-on, interleaving effects, and comparison of different topologies are presented. The experimental waveforms of a 1 kW two-phase interleaved converter prototype are provided to verify the validity of the proposed converter.

ISG 시스템용 고효율 양방향 DC-DC 컨버터의 설계 및 자율적이며 끊김없는 모드전환을 위한 제어전략 (Design and Control Strategy for Autonomous and Seamless Mode Transition of High Efficiency Bidirectional DC-DC Converter for ISG Systems)

  • 박준성;권민호;최세완
    • 전력전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, a bidirectional DC-DC converter for idle stop and go (ISG) is developed to reduce fuel consumption. A three-phase non-isolated half-bridge converter is selected through a design method by considering efficiency and volume. According to the state of charge of the batteries at both the low-voltage and high-voltage sides, buck mode, which charges a low-voltage battery from the generated motor energy, and boost mode, which provides power to the motor from the low- and high-voltage battery sides, are required in the ISG system. Hence, an autonomous and seamless bidirectional control method using a variable current limiter is proposed for mode change. A 1.8 kW engineering sample of the proposed converter has been built and tested to verify the validity of the proposed concept. The maximum efficiencies, including gate driver and control circuit losses, are 96.4% in charging mode and 96.1% in discharging mode.

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

전 영역 ZVS가 가능한 양방향 3상 절연형 인터리브드 DC-DC 컨버터의 제어방법 (Control Method of Bi-Directional ZVS Three-Phase Isolated Interleaved DC-DC Converter)

  • 이일용;이병하;차한주
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.337-338
    • /
    • 2012
  • 본 논문에서는 전 영역 ZVS가 가능한 양방향 3상 절연형 인터리브드 DC-DC 컨버터의 제어방법에 대해 서술한다. 3상 절연형 인터리브드 DC-DC 컨버터는 모든 스위치가 ZVS동작을 하여 높은 효율을 갖고 3상 구조를 채택하여 전류경로의 분산을 통한 전력전달 능력의 증대 효과 및 입력전류 리플 크기를 줄여주는 인터리브드 효과를 갖는다. 승압/강압 능력이 있는 부스트/벅 컨버터의 구조는 낮은 권선비의 변압기로 높은 승압/강압 전력변환, 에너지원과 부하 사이에 절연이 가능한 구조이며, 인터리브 동작이 이루어짐에도 불구하고 3상을 각각 제어하지 않고 배터리의 전압전류와 출력전압만을 입력받아 벅모드와 부스트 모드 모두 전압, 전류제어를 수행함으로서 시스템의 간략화가 가능하였다. 따라서 본 논문에서는 제안된 DC-DC컨버터의 제어기를 구성하고 실험을 통해 확인하였다.

  • PDF

배터리 충·방전용 3상 인터리브드 양방향 DC-DC 컨버터의 스위칭 손실 최소화 (Switching Losses Minimization of the Three-phase Interleaved Bidirectional DC-DC Converter for Battery Charging and Discharging)

  • 권창근;정재헌;노의철;김인동;김흥근;전태원
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.42-43
    • /
    • 2012
  • 본 논문에서는 3상 인터리브드 양방향 DC-DC 컨버터의 소프트스위칭 기법에 대해 연구하였다. 인터리브드 방식에 사용되는 소프트스위칭 기법의 장 단점을 파악하고 전기자동차 충 방전용으로 적합한 3상 인터리브드 양방향 DC-DC 컨버터의 소프트스위칭 기법에 대해 제안한다.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF