• Title/Summary/Keyword: three-mass vehicle model

Search Result 25, Processing Time 0.03 seconds

Theoretical and Experimental Study on the, Dynamic Behavior of Continuous Bridge having Irregular Surface under-Moving Load (불규칙한 노면(路面)을 주행하는 이동하중에 의한 연속교의 동적거동에 관한 이론 및 실험적 연구)

  • Chang, Sung Pil;Yhim, Sung Soon;Jo, Sir Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.21-30
    • /
    • 1989
  • In this study, the dynamic behavior of a continuous bridge under moving load is studied considering roughness of the road surface. Vehicle model includes the spring effects of axes, and due to these effects, equations of motions for the vehicle and bridge are derived in coupled form. And then iteration method is used to solve the equations. In experimental study a bridge model is constructed considering the similarity rule in order that the model exhibits dynamic behavior similar to that of prototype. Three types of roughness such as uneven random roughness, uplift on the approach and piece-wise constant roughness are used to describe road roughness. Through the numerical analysis and experiments, the effects of surface roughness, sprung mass, and velocity on the dynamic behavior of the bridge are examined.

  • PDF

DYNAMIC CHARACTERISTICS OF SCALED-DOWN W-BEAMS UNDER IMPACT

  • Hui, T.-Y.-J.;Ruan, H.-H.;Yu, T.-X.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • W-beam guardrail system has been the most popular roadside safety device around the world. Through large plastic deformation and corresponding energy dissipation, a W-beam guardrail system contains and re-directs out-of-control vehicles so as to reduce the impact damage on the vehicle occupants and the vehicles themselves. In this paper, our recent experiments on 1 : 3.75 downscaled W-beam and the beam-post system are reported. The static and impact test results on the load characteristics, the global response and the local cross-sectional distortion are reveled. The effects of three different end-boundary conditions for the beam-only testing are examined. It is found that the load characteristics are much dependent on the combined contribution of the local cross-sectional distortion and the end-supporting conditions. The energy Partitioning between the beam and the supporting Posts in the beam-Post-system testing were also examined. The results showed that the energy dissipation partitioning changed with the input impact energy. Finally, a simple mass-spring model is developed to assess the dynamic response of a W-beam guardrail system in response to an impact loading. The model's prediction agrees well with the experimental results.

Indirect structural health monitoring of a simplified laboratory-scale bridge model

  • Cerda, Fernando;Chen, Siheng;Bielak, Jacobo;Garrett, James H.;Rizzo, Piervincenzo;Kovacevic, Jelena
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.849-868
    • /
    • 2014
  • An indirect approach is explored for structural health bridge monitoring allowing for wide, yet cost-effective, bridge stock coverage. The detection capability of the approach is tested in a laboratory setting for three different reversible proxy types of damage scenarios: changes in the support conditions (rotational restraint), additional damping, and an added mass at the midspan. A set of frequency features is used in conjunction with a support vector machine classifier on data measured from a passing vehicle at the wheel and suspension levels, and directly from the bridge structure for comparison. For each type of damage, four levels of severity were explored. The results show that for each damage type, the classification accuracy based on data measured from the passing vehicle is, on average, as good as or better than the classification accuracy based on data measured from the bridge. Classification accuracy showed a steady trend for low (1-1.75 m/s) and high vehicle speeds (2-2.75 m/s), with a decrease of about 7% for the latter. These results show promise towards a highly mobile structural health bridge monitoring system for wide and cost-effective bridge stock coverage.

Source Apportionment of Fine Particle $PM_{2.5}$ in Beijing, China

  • Zhang, Yuanhang;Zhu, Xianlei;Zeng, Limin;Wang, Wei
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.216-225
    • /
    • 2003
  • Fine particles with aerodynamic diameter less than 2.5 ${\mu}m$ (PM2.5) were collected from three sites in Beijing during April, August, and November 2000 and January 2001. After chemical components in samples are analyzed, a chemical mass balance (CMB) receptor model using PARs as tracers is applied to quantify the source contributions to PM2.5 in Beijing. The results show that the major sources are coal combustion, fugitive dust, vehicle exhaust, secondary sulfate and nitrate, and organic matter while biomass burning and construction dust contribute only a small fraction. In addition, source inventory in Beijing is used to determine the primary source contributions. The two methods result in comparable results. Source apportionment at three sampling sites presents similar contributions to PM2.5 although the sites are far away from each other. However, distinct seasonal pattern is presented for the source contributions from coal combustion, fugitive dust, biomass burning, secondary sulfate and nitrate.

  • PDF

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Thermal Flow Analysis of an Engine Room using a Porous Media Model for Imitating Flow Rate Reduction at Outlet of Industrial Machines (다공성 매질 모델 기반 출구유량 감소 모사 기법을 이용한 산업기계용 엔진룸 열유동해석)

  • Choi, Yo Han;Yoo, Il Hoon;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.62-68
    • /
    • 2022
  • Considering the characteristics of industrial machines that lack vehicle-induced wind, forced convection by a cooling fan is mostly required. Therefore, numerical analysis of an engine room is usually performed to examine the cooling performance in the room. However, most engine rooms consist of a number of parts and components at specific positions, leading to high costs for numerical modeling and simulation. In this paper, a new methodology for three-dimensional computer-assisted design simplification was proposed, especially for the pile of components and parts at the engine room outlet. A porous media model and regression analysis were used to derive a meta-model for imitating the flow rate reduction at the outlet by the pile. The results showed that the fitted model was reasonable considering the coefficient of determination. The final numerical model of the engine room was then used to simulate the velocity distribution by changing the mass flow rate at the outlet. The results showed that both velocity distributions were significantly changed in each case and the meta-model was valid in imitating the flow rate reduction by some piles of components and parts.

Study of acupuncture stimulation on experimental osteopenia

  • Kanai, Shigeyuki;Taniguchi, Norimasa;Kanda, Kayo;Higashino, Hideaki
    • Advances in Traditional Medicine
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2006
  • In order to study the effect of acupuncture stimulation on bone mineral density (BMD), using the ovariectomized (OVX) rat model, we assessed the degree of osteopenia by dual-energy X-ray absorptiometry, measured the level of locomotor activity using a metabolism measuring system, and performed histological studies of bone tissue. Twenty-four female Wistar rats (8 weeks old, 160 - 180 g)were divided into three groups. Rats in the OVX-A group underwent ovariectomy followed by acupuncture stimulation. The OVX rats in the Vehicle control group were not treated with acupuncture as a control. The rats in the control group received neither ovariectomy nor acupuncture. Acupuncture stimulation for 12 weeks in the OVX-A group inhibited the reduction in BMD of the femoral bones caused by ovariectomy. Moreover, in the two OVX groups, there was no clear difference in the level of locomotor activity between the active and resting phases prior to acupuncture stimulation in each rat, and the pattern of locomotor activity was irregular. After acupuncture stimulation of the OVX-A rats, the pattern of locomotor activity became diphasic with clear active and resting phases, as was observed in the Control group. On histological studies, the continuity of trabecular bone was maintained more favorably and bone mass was higher in the OVX-A group than in the vehicle control group. These results suggest that the increased locomotor activity that had been induced by acupuncture stimulation increased the BMD.

Intended for photovoltaic modules Compare modeling between SfM based RGB and TIR Images (SfM 기반 RGB 및 TIR 영상해석을 통한 태양광 모듈 이상징후 정밀위치 검출)

  • Park, Joon-Kyu;Han, Woong-ji;Kwon, Young-Hun;Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • Recently, interest in solar energy, which is the center of new government energy policy, is increasing. However, the focus is on mass production of solar power plants, and policies and related technologies for maintenance and management of existing installed PV modules are insufficient. In this study, we use UAV (Unmanned Aerial Vehicle) to acquire RGB and infrared images, apply it to the structure-from-motion (SfM) based image analysis tool, model the three- And the position of the hot spot was monitored and coordinates were detected. As a result, it is possible to provide basic spatial information for maintenance of solar module by monitoring and position detection of hot-spot suspected solar cells by superimposing infrared image and RGB image based on unmanned aerial vehicle.

Development and Application of Korean Dummy Models (한국인 인체 모델의 개발과 적용)

  • Lee, Sang-Cheol;Son, Gwon;Kim, Seong-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • Human dummies are essential tools in the development of such products as vehicle have been actively used not only in reach and view field tests. but also in impact perception evaluations. This study attempted to obtain geometric and dynamic model body segments from Korean anthropometric data. The investigation focused on the de both human and dummy for the geometric and inertial properties. The dynamic modeli being suggested is based on rigid body dynamics using fifteen individual body segments by joins. The segments are connected at the locations representing the physical joint body so that each segment has its mass and moment of inertia. For visual three-dimensional graphic was used for easier implementation of the dumn applications. For applications, proposed Korean dummies Were used in dynamic crash and driver's view and reach test modules were developed in virtual environment.

$H_\infty$ Control Apprach to a Magnetic Levitation System with Two Poles on $j_\omega$-Axis

  • Qi, Run-De;Tsuji, Teruo;Oguro, Ryuichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.339-344
    • /
    • 1993
  • An H$_{\infty}$ control system design for a magnetic levitation system is presented. In the control system design, we consider the influence of both disturbances and uncertainties in the model. The main disturbances stem from the position sensors.The uncertainties are divided into electromagnetic and mechanical ones: the former are due to the gain change in the current amplifier, the influence of leakage flux and modelling error in the magnetic circuit and the latter are due to the changes of the mass and the moments of inertia of the vehicle. Therefore, the designed controller is indispensable to guarantee the robustness of this system for both stability and performance. The controller design is based on the standard H$_{\infty}$ optimal control problem. As the novel features in this paper :(1) there are two poles on j.omega.-axis in the control model;(2) an integrator is included in the controller so that equivalently there are three poles on j.omega.-axis in the model. Finally, several experiments and simulations are carried out to verify the high performance and robustness of the designed control system.m.

  • PDF